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What the paper is about

A method for discovering how well a model fits data.
Uses MMD, including witness function to visualise differences in data
generated from model and observed data
Applied to:

Samples of digits generated from RBMs and DBNs
Evaluating the performance of the automated statistician

Bonus content (not from paper) : testing goodness of fit of a model
without drawing samples from it.
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P-values
Given data Y obs :=

(
yobs
i
)n
i=1. Model is M with parameters θ, construct

statistic T of the data, “whose distribution does not depend on θ.” (difficult!
Example next slide)

There are several plausible definitions for p-values.

pfreq(Y obs) = P(T (Y ) ≥ T (Y obs)) Y ∼ p(Y |θ,M) for any θ.

Prior predictive p-value:

Y ∼
ˆ

p(Y |θ,M)p(θ|M)dθ.

Posterior predictive p-value:

Y ∼
ˆ

p(Y |θ,M)p(θ|Y obs ,M)dθ.

Plug-in p-value:

Y ∼
ˆ

p(Y |θ̂,M) θ̂ = argmax p(θ|Y obs ,M).

Last two: how surprising is the data Y obs even after you’ve seen it?
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Aside: Choice of the statistic T

One example from the paper of Rubin, “Bayesianly justifiable and relevant
frequency calculations for the applied statistician”, p. 1168:

Model is Gaussian
Truth is Cauchy distribution
A statistic is:

T (X ) =
X[10] − X[9]

X[9] − X[8]

(ratio of gaps between order statistics).
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Idea for this paper

Idea for this paper: Fit the model to the observations, draw samples from
the model (...wasteful?), compare samples with observations.
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Reminder: MMD witness function

The maximum mean discrepancy is:

MMD(P,Q) := sup
‖f ‖≤1

EP f − EQ f .

When samples {xi}ni=1 ∼ P and {yi}mi=1 ∼ Q, then an estimate of the
witness function is:

f̂ ∝
n∑

i=1

k(xi , ·)−
m∑

j=1

k(yi , ·).

from the same distribution. For consistency with two sample testing literature we now switch nota-
tion; suppose we have samples X = (xi)i=1...m and Y = (yi)i=1...n drawn i.i.d. from distributions
p and q respectively. The two sample problem asks if p = q.

A way of answering the two sample problem is to consider maximum mean discrepancy (MMD)
[e.g. 12] statistics

MMD(F , p, q) = sup
f2F

(Ex⇠p[f(x)]� Ey⇠q[f(y)]) (3.1)

where F is a set of functions. When F is a reproducing kernel Hilbert space (RKHS) the function
attaining the supremum can be derived analytically and is called the witness function

f(x) = Ex0⇠p[k(x, x0)]� Ex0⇠q[k(x, x0)] (3.2)
where k is the kernel of the RKHS. Substituting (3.2) into (3.1) and squaring yields

MMD2(F , p, q) = Ex,x0⇠p[k(x, x0)] + 2Ex⇠p,y⇠q[k(x, y)] + Ey,y0⇠q[k(y, y0)]. (3.3)

This expression only involves expectations of the kernel k which can be estimated empirically by

MMD2
b(F , X, Y ) =

1

m2

mX

i,j=1

k(xi, xj)�
2

mn

m,nX

i,j=1

k(xi, yj) +
1

n2

nX

i,j=1

k(yi, yj). (3.4)

One can also estimate the witness function from finite samples

f̂(x) =
1

m

mX

i=1

k(x, xi)�
1

n

nX

i=1

k(x, yi) (3.5)

i.e. the empirical witness function is the difference of two kernel density estimates [e.g. 17, 18].
This means that we can interpret the witness function as showing where the estimated densities of
p and q are most different. While MMD two sample tests are well known in the literature the main
contribution of this work is to show that this interpretability of the witness function makes them a
useful tool as an exploratory form of statistical model criticism.

4 Examples on toy data

To illustrate the use of the MMD two sample test as a tool for model criticism we demonstrate its
properties on two simple datasets and models.

Newcomb’s speed of light data A histogram of Simon Newcomb’s 66 measurements used to
determine the speed of light [19] is shown on the left of figure 1. We fit a normal distribution to this
data by maximum likelihood and ask whether this model is a faithful representation of the data.
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Figure 1: Left: Histogram of Simon Newcomb’s speed of light measurements. Middle: Histogram
together with density estimate (red solid line) and MMD witness function (green dashed line). Right:
Histogram together with updated density estimate and witness function.

We sampled 1000 points from the fitted distribution and performed an MMD two sample test using
a radial basis function kernel2. The estimated p-value of the test was less than 0.001 i.e. a clear
disparity between the model and data.

The data, fitted density estimate (normal distribution) and witness function are shown in the middle
of figure 1. The witness function has a trough at the centre of the data and peaks either side indicating
that the fitted model has placed too little mass in its centre and too much mass outside its centre.

2 Throughout this paper we estimate the null distribution of the MMD statistic using the bootstrap method
described in [12] using 1000 replicates. We use a radial basis function kernel and select the lengthscale by 5
fold cross validation using predictive likelihood of the kernel density estimate as the selection criterion.

3
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Finding poor sample regions, restricted Boltzmann machines

High and low values of witness function for RBM with 500 hidden units
(samples aggregated from 1500 RBNs, each digit generated independently
from clamping label)
High witness function, representative samples:

When trained on the MNIST handwritten digit data, samples from RBMs (see figure 3a for random
samples4) and DBNs certainly look like digits, but it is hard to detect any systematic anomalies
purely by visual inspection. We now use MMD model criticism to investigate how faithfully RBMs
and DBNs can capture the distribution over handwritten digits.

RBMs can consistently mistake the identity of digits We trained an RBM with architecture
(784) $ (500) $ (10)5 using 15 epochs of persistent contrastive divergence (PCD-15), a batch
size of 20 and a learning rate of 0.1 (i.e. we used the same settings as the code available at the deep
learning tutorial [25]). We generated 3000 independent samples from the learned generative model
by initialising the network with a random training image and performing 1000 gibbs updates with
the digit labels clamped6 to generate each image (as in e.g. [23]).

Since we generated digits from the class conditional distributions we compare each class separately.
Rather than show plots of the witness function for each digit we summarise the witness function
by examples of digits closest to the peaks and troughs of the witness function (the witness function
estimate is differentiable so we can find the peaks and troughs by gradient based optimisation).
We apply MMD model criticism to each class conditional distribution, using PCA to reduce to 2
dimensions as in section 4.

a) b)

c) d)

e) f)

Figure 3: a) Random samples from an RBM. b) Peaks of the witness function for the RBM (digits
that are over-represented by the model). c) Peaks of the witness function for samples from 1500
RBMs (with differently initialised pseudo random number generators during training). d) Peaks of
the witness function for the DBN. e) Troughs (digits that are under-represented by the model) of the
witness function for samples from 1500 RBMs. f) Troughs of the witness function for the DBN.

Figure 3b shows the digits closest to the two most extreme peaks of the witness function for each
class; the peaks indicate where the fitted distribution over-represents the distribution of true digits.
The estimated p-value for all tests was less than 0.001. The most obvious problem with these digits
is that the first 2 and 3 look quite similar.

To test that this was not just an single unlucky RBM, we trained 1500 RBMs (with differently
initialised pseudo random number generators) and generated one sample from each and performed
the same tests. The estimated p-values were again all less than 0.001 and the summaries of the
peaks of the witness function are shown in figure 3c. On the first toy data example we observed
that the MMD statistic does not highlight outliers and therefore we can conclude that RBMs are
making consistent mistakes e.g. generating a 0 from the 7 distribution or a 5 when it should have
been generating an 8.

DBNs have nightmares about ghosts We now test the effectiveness of deep learning to represent
the distribution of MNIST digits. In particular, we fit a DBN with architecture (784)  (500)  
(500) $ (2000) $ (10) using RBM pre-training and a generative fine tuning algorithm described
in [24]. Performing the same tests with 3000 samples results in estimated p-values of less than 0.001
except for the digit 4 (0.150) and digit 7 (0.010). Summaries of the witness function peaks are shown
in figure 3d.

4 Specifically these are the activations of the visible units before sampling sampling binary values. This
procedure is an attempt to be consistent with the grayscale input distribution of the images. Analogous discrep-
ancies would be discovered if we had instead sampled binary pixel values.

5That is, 784 input pixels and 10 indicators of the class label are connected to 500 hidden neurons.
6Without clamping the label neurons, the generative distribution is heavily biased towards certain digits.
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Low witness function, representative samples:

When trained on the MNIST handwritten digit data, samples from RBMs (see figure 3a for random
samples4) and DBNs certainly look like digits, but it is hard to detect any systematic anomalies
purely by visual inspection. We now use MMD model criticism to investigate how faithfully RBMs
and DBNs can capture the distribution over handwritten digits.

RBMs can consistently mistake the identity of digits We trained an RBM with architecture
(784) $ (500) $ (10)5 using 15 epochs of persistent contrastive divergence (PCD-15), a batch
size of 20 and a learning rate of 0.1 (i.e. we used the same settings as the code available at the deep
learning tutorial [25]). We generated 3000 independent samples from the learned generative model
by initialising the network with a random training image and performing 1000 gibbs updates with
the digit labels clamped6 to generate each image (as in e.g. [23]).

Since we generated digits from the class conditional distributions we compare each class separately.
Rather than show plots of the witness function for each digit we summarise the witness function
by examples of digits closest to the peaks and troughs of the witness function (the witness function
estimate is differentiable so we can find the peaks and troughs by gradient based optimisation).
We apply MMD model criticism to each class conditional distribution, using PCA to reduce to 2
dimensions as in section 4.

a) b)

c) d)

e) f)

Figure 3: a) Random samples from an RBM. b) Peaks of the witness function for the RBM (digits
that are over-represented by the model). c) Peaks of the witness function for samples from 1500
RBMs (with differently initialised pseudo random number generators during training). d) Peaks of
the witness function for the DBN. e) Troughs (digits that are under-represented by the model) of the
witness function for samples from 1500 RBMs. f) Troughs of the witness function for the DBN.

Figure 3b shows the digits closest to the two most extreme peaks of the witness function for each
class; the peaks indicate where the fitted distribution over-represents the distribution of true digits.
The estimated p-value for all tests was less than 0.001. The most obvious problem with these digits
is that the first 2 and 3 look quite similar.

To test that this was not just an single unlucky RBM, we trained 1500 RBMs (with differently
initialised pseudo random number generators) and generated one sample from each and performed
the same tests. The estimated p-values were again all less than 0.001 and the summaries of the
peaks of the witness function are shown in figure 3c. On the first toy data example we observed
that the MMD statistic does not highlight outliers and therefore we can conclude that RBMs are
making consistent mistakes e.g. generating a 0 from the 7 distribution or a 5 when it should have
been generating an 8.

DBNs have nightmares about ghosts We now test the effectiveness of deep learning to represent
the distribution of MNIST digits. In particular, we fit a DBN with architecture (784)  (500)  
(500) $ (2000) $ (10) using RBM pre-training and a generative fine tuning algorithm described
in [24]. Performing the same tests with 3000 samples results in estimated p-values of less than 0.001
except for the digit 4 (0.150) and digit 7 (0.010). Summaries of the witness function peaks are shown
in figure 3d.

4 Specifically these are the activations of the visible units before sampling sampling binary values. This
procedure is an attempt to be consistent with the grayscale input distribution of the images. Analogous discrep-
ancies would be discovered if we had instead sampled binary pixel values.

5That is, 784 input pixels and 10 indicators of the class label are connected to 500 hidden neurons.
6Without clamping the label neurons, the generative distribution is heavily biased towards certain digits.

5
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Finding poor sample regions, automated statistician

Gaussian process regression. Here Gaussian noise model is violated.
Witness function has high amplitude where the Gaussian noise model does
not match the samples.
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Figure 4: From left to right: Solar data with SE posterior. Witness function of SE fit to solar. Gas
production data with SE posterior. Witness function of SE fit to gas production.

Figure 5 shows the unemployment and Internet data sets, the posterior distribution for the ABCD
fits to the data and the witness functions of the ABCD fits. The ABCD method has captured much
of the structure in these data sets, making it difficult to visually identify discrepancies between
model and data. The witness function for unemployment shows peaks and troughs at similar values
of the input x. Comparing to the raw data we see that at these input values there are consistent
outliers. Since ABCD is based on Gaussianity assumptions these consistent outliers have caused
the method to estimate a large variance in this region, when the true data is non-Gaussian. There
is also a similar pattern of peaks and troughs on the Internet data suggesting that non-normality has
again been detected. Indeed, the data appears to have a hard lower bound which is inconsistent with
Gaussianity.
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Figure 5: From left to right: Unemployment data with ABCD posterior. Witness function of ABCD
fit to unemployment. Internet data with ABCD posterior. Witness function of ABCD fit to Internet.

7 Discussion of model criticism and related work

Are we criticising a particular model, or class of models? In section 2 we interpreted the differ-
ences between classical, Bayesian prior/posterior and plug-in p-values as corresponding to different
null hypotheses and interpretations of the word ‘model’. In particular classical p-values test a null
hypothesis that the data could have been generated by a class of distributions (e.g. all normal distri-
butions) whereas all other p-values test a particular probability distribution.

Robins, van der Vaart & Ventura [28] demonstrated that Bayesian and plug-in p-values are not clas-
sical p-values (frequentist p-values in their terminology) i.e. they do not have a uniform distribution
under the relevant null hypothesis. However, this was presented as a failure of these methods; in
particular they demonstrated that methods proposed by Bayarri & Berger [29] based on posterior
predictive p-values are asymptotically classical p-values.

This claimed inadequacy of posterior predictive p-values was rebutted [30] and while their useful-
ness is becoming more accepted (see e.g. introduction of [31]) it would appear there is still confusion
on the subject [32]. We hope that our interpretation of the differences between these methods as dif-
ferent null hypotheses — appropriate in different circumstances — sheds further light on the matter.

Should we worry about using the same data for traning and criticism? Plug-in and posterior
predictive p-values test the null hypothesis that the observed data could have been generated by the
fitted model or posterior predictive distribution. In some situations it may be more appropriate to
attempt to falsify the null hypothesis that future data will be generated by the plug-in or posterior
predictive distribution. As mentioned in section 2 this can be achieved by reserving a portion of the
data to be used for model criticism alone, rather than fitting a model or updating a posterior on the
full data. Cross validation methods have also been investigated in this context [e.g. 33, 34].
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Bonus content: goodness of fit without sample from model?

Define the Stein operator Tq : F → Rd such that

Tqf = ∇ log q(x)f (x) +∇f (x).

Suppose q(x)f (x)→ 0 at the boundaries of X . Then EqTqf = 0d , the
d × 1 vector of zeros.

Proof: integration by parts:

EqTqf =

ˆ
[∇ (log q(x)) f (x) +∇f (x)] q(x)dx

=

ˆ [∇q(x)
q(x)

f (x) +∇f (x)
]

q(x)dx

=

ˆ
[∇q(x)f (x) +∇f (x)q(x)] dx

=
[
. . . [q(x)f (x)]Bi

−Bi
. . .
]
+

ˆ
[−∇f (x)q(x) +∇f (x)q(x)] dx

= 0d .
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Bonus content: MMD using Stein operator

MMD with function class restricted via the Stein operator:

dq(p) = sup
‖f ‖≤1

(EpTqf − EqTqf ) = sup
‖f ‖≤1

EpTqf
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Bonus content: MMD using Stein operator

MMD with function class restricted via the Stein operator:

dq(p) = sup
‖f ‖≤1

(EpTqf − EqTqf ) = sup
‖f ‖≤1

EpTqf

= sup
‖f ‖≤1

Ep

[
d
dx

log q(x)f (x) +
d
dx

f (x)
]

= sup
‖f ‖≤1

[
Ep

〈
f ,
[

d
dx

log q(x)
]

k(x , ·) + d
dx

k(x , ·)
〉]

= sup
‖f ‖≤1

〈
f ,Ep

[[
d
dx

log q(x)
]

k(x , ·) + d
dx

k(x , ·)
]〉

= ‖ξ‖
where

ξ :=

ˆ [(
d
dx

log q(x)
)

k(x , ·) + d
dx

k(x , ·)
]

p(x)dx ∈ F
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