
Score Function Features for Discriminative Learning:
Matrix and Tensor Framework

Janzamin, Sedghi, Anandkumar

Arthur Gretton’s notes

February 26, 2015

Janzamin, Sedghi, Anandkumar (Arthur Gretton’s notes)Score Function Features for Discriminative Learning: Matrix and Tensor FrameworkFebruary 26, 2015 1 / 12



Public service announcement

The Journal of Basic and Applied Social Psychology has banned the
use of p-values.

“We hope and anticipate that banning the null hypothesis significance
testing procedure (NHSTP) will have the effect of increasing the
quality of submitted manuscripts by liberating authors from the
stultified structure of NHSTP thinking thereby eliminating an
important obstacle to creative thinking.”

What about Bayesian error analysis?

“The usual problem with Bayesian procedures is that they depend on
some sort of Laplacian assumption to generate numbers where none
exist”
“With respect to Bayesian procedures, we reserve the right to make
case-by-case judgments, and thus Bayesian procedures are neither
required nor banned from BASP.” (an uninformed prior?)
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What the paper is about

How do we easily obtain good features for classification?
Features (expected high order derivatives) of the conditional mean of
the output given the input (useful for classification, where this
conditional mean is all that matters).
Such derivatives can be estimated using scores, which come from
unlabaled data.

This paper conjectures a set of informative features of these derivatives
(with zero evidence).

Outline:
How do score functions determine features of the conditional
distribution?
How do we extract features from these scores?
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Problem setting

Conditional mean of y (binary) given x :

G (x) = E(y |x).

Some useful features for classification might derive from

E
(
∇(m)

x G (x)
)
,

e.g. for m ≤ 3 (up to third order tensor).
These are hard to compute, and in any case require labeled data.
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Simplest case: first order score

Idea: estimate
−∇ log p(x)

Then
−E (y∇ log p(x)) = E (∇xG (x))

You can learn −∇ log p(x) from unlabeled data, then apply it to many
prediction problems.
Next:

Proof of the above result
Learning problem which allows us to estimate −∇ log p(x).
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Simplest case: first order score

Result:
−E (y∇ log p(x)) = E (∇xG (x))

Proof in 1-D (from Stein et al., 2004, Proposition 4)
Definitions and conditions:

Interval I := [a, b] where −∞ ≤ a < b ≤ ∞.
p(x) a density on I with a regular derivative p′(x) (countably many sign changes,
continuous at sign changes)

Score is

ψ(x) =
p′(x)

p(x)
=

d
dx

log p(x)

G (x) ∈ F is class of functions where the following integrals exist:

E
[∣∣G ′(x)

∣∣] <∞ E [|G (x)ψ(x)|] <∞
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Simplest case: first order score

Proof (continued): Integration by parts:

EG ′(X ) =

ˆ
I
G ′(x)p(x)dx

= G (b−)p(b−)− G (a+)p(a+)−
ˆ

I
G (x)p′(x)dx

= G (b−)p(b−)− G (a+)p(a+)−
ˆ

I
G (x)ψ(x)p(x)dx .

Finally, assuming everything goes to zero at boundaries,

EG ′(X ) = −E


E(y |x)︸ ︷︷ ︸

G(X )

ψ(x)


 = −E [yψ(x)] .
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How to learn first order score

One idea is score matching (Hyvarinen, 2005).
Given a parametric model qθ parametrized by θ,

DF (p, qθ) =

ˆ
x
p(x)

∥∥∥∥
∇xp(x)

p(x)
− ∇xqθ(x)

qθ(x)

∥∥∥∥ dx .

Again integrating by parts, we get

DF (p, qθ) =

ˆ
x
p(x)


‖∇ log p(x)‖2︸ ︷︷ ︸

indep of θ

+ ‖∇ log qθ(x)‖2 + 2∆ log qθ(x)


 dx

where

∆ :=
∑

i∈[d ]

∂2

∂x2
i
.

Empirically: replace expectation over p(x) with empirical expectation, solve
for θ (we do this in infinite exp. family paper)
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Another estimate of score functions

From Alain and Bengio (2014): denoising autoencoder is:

LDAE := E [`(x , r(N(x)))]

where
r(N(x)) is the reconstructed version of x from N(x), r = g(f (x)),
where f is an encoder, and g is a decoder.
` is the squared loss, `(x , y) = (x − y)2.
N(x) = x + ε, ε ∼ N (0, σ2).

The optimal rσ∗ takes the form (assuming f , g have the capacity to represent it...)

r∗σ(x) =
Eε[p(x − ε)(x − ε)]

Eε[p(x − ε)]

and
r∗σ = x + σ2∂ log p(x)

∂x
+ o(σ2) σ → 0.

I.e. use denoising autoencoders to get score estimates.
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Does this generalize to higher order?

The multivariate score relation:

E
[
∇(m)G (x)

]
= E[G (x)Sm(x)],

where the scores

Sm(x) = (−1)m∇
(m)
x p(x)

p(x)

may be defined by recursion,

Sm = −Sm−1(x)⊗∇x log p(x)−∇xSm−1(x).

Gaussian case: p(x) = 1
(
√

2π)
dx e−‖x‖

2/2. Then ∇x log p(x) = −x , and we

recover Stein’s lemma,

E [xG (x)] = E [∇xG (x)] .
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What features can we get?

Idea: we want features of expected high order derivatives of

T := E
[
∇(m)G (x)

]

A tensor has CP-rank k if it can be written as the sum of k rank-1 tensors,

T =
∑

i∈[k]
wiai ⊗ bi ⊗ ci .

How do we find such a decomposition?
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What features can we get?

Algorithm 1 Tensor decomposition via tensor power iteration (Anandkumar et al., 2014b)

Require: 1) Rank-k tensor T =
∑

j∈[k] uj ⊗ uj ⊗ uj ∈ Rd×d×d, 2) L initialization vectors û
(1)
τ ,

τ ∈ [L], 3) number of iterations N .
for τ = 1 to L do

for t = 1 to N do
Tensor power updates (see (15) for the definition of the multilinear form):

û(t+1)
τ =

T
(
I, û

(t)
τ , û

(t)
τ

)

∥∥∥T
(
I, û

(t)
τ , û

(t)
τ

)∥∥∥
, (13)

end for
end for
return the cluster centers of set

{
û

(N+1)
τ : τ ∈ [L]

}
(by Procedure 2) as estimates uj .

4 Spectral Decomposition Algorithm

As part of the framework we introduced in Figure 1, we need a spectral/tensor method to decompose
the higher order derivative tensor E[∇(m)G(x)] to its rank-1 components denoted by uj. Let us
first consider the case that the derivative tensor is a matrix 9. Then the problem of decomposing
this matrix to the rank-1 components reduces to the usual Principle Component Analysis (PCA),
where the rank-1 directions are the eigenvectors of the matrix.

More generally, we can form higher order derivatives (m > 2) of the label function G(x) and
extract more information from their decomposition. The higher order derivatives are represented as
tensors which can be seen as multi-dimensional arrays. There exist different tensor decomposition
frameworks, but the most popular one is the CP decomposition where a (symmetric) rank-k tensor
T ∈ Rd×d×d is written as the sum of k rank-1 tensors 10

T =
∑

j∈[k]

uj ⊗ uj ⊗ uj, uj ∈ Rd. (12)

Here notation ⊗ represents the tensor (outer) product; see Section 6.1 for a detailed discussion on
the tensor notations.

We now state a tensor decomposition algorithm for computing decomposition forms in (12). The
Algorithm 1 is considered by Anandkumar et al. (2014b) where the generalization to higher order
tensors can be similarly introduced. The main step in (13) performs power iteration 11; see (15) for
the multilinear form definition. After running the algorithm for all different initialization vectors,
the clustering process from Anandkumar et al. (2014b) ensures that the best converged vectors are
returned as the estimates of true components uj. Detailed analysis of the tensor decomposition
algorithm and its convergence properties are provided by Anandkumar et al. (2014b). We briefly
summarize the initialization and convergence guarantees of the algorithm below.

9For instance, it happens when the label function y is a scalar, and m = 2 for vector input x. Then, E[∇(2)G(x)]
is a matrix (second order tensor).

10The decomposition for an asymmetric tensor is similarly defined as T =
∑

j∈[k] uj ⊗ vj ⊗ wj , uj , vj , wj ∈ Rd.
11This is the generalization of matrix power iteration to 3rd order tensors.

16

We used the multilinear form

T (I , v ,w) =
∑

j ,l∈[d ]
vjwlT (:, j , l).
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