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Motivation

e Expectation propagation [Minka, 2001]
— popular alternative to variational Bayes (VB) for
approximate Bayesian inference
— EP iteratively minimizes KL(p||q) whereas VB minimizes

KL(ql|p)
— q is usually exponential family
— EP: lterative minimization as apposed to Assumed Density
Filtering (ADF) where a data point is processed just once
— works well for log-concave unimodal posterior distributions
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Stochastic expectation propagation (SEP) [Li et al., 2015]
Expectation Propagation in the large-data limit

[Dehaene and Barthelmé, 2015] introduces Averaged EP
(AEP) which is easier to theoretically analyze than EP



Overview

SEP: Stochastic EP that operates on mini-batches of data
Global posterior approximation which is updated locally
Similar predictive performance as EP

Memory requirement reduced by a factor of N compared to
EP

Much better uncertainty estimate than ADF

Interesting connections to related work on distributed
Bayesian inference (SMS: [Xu et al., 2014], EP as a way of
life [Gelman et al., 2014])



EP vs ADF

p(6ID) o po(6 prnw (1)
p(8|D) ~ q(6) o po(8 H fo(6 2
Algorithm 1 EP Algorithm 2 ADF
1: choose a factor f, to refine: 1: choose a datapoint &, ~ D:
2: compute cavity distribution 2: compute cavity distribution
q-n(0) x q(6)/fr(0) q-n(0) = q(6)
3: compute tilted distribution 3: compute tilted distribution
Pn(0) o p(xn|0)q—n(0) Pn(0) o p(xn|0)q—n(0)
4: moment matching: 4: moment matching:
fn(8) < proj[pn(6)]/q-n(6) fn(8) <= proj[pn(6)]/q-(6)
5: inclusion: 5: inclusion:

9(0) < q-n(6)fn(6) () < q-n(0)n(6)



Problems with EP

Computing cavity distribution requires removal of current
approximation

Approximating each factor individually leads to O(N)
storage

ADF does not require storage of individual factors
ADF cannot use multiple passes through the data
Uncertainty estimates of ADF are not well calibrated



Stochastic EP

e Idea: use a single factor which is the geometric mean of
the individual approximations

N
an )~ [] p(xnl6) (3)
n=1

e Interpretation:
— version of EP in which the approximating factors are tied
— corrected version of ADF that prevents overfitting.
¢ Individual factors need not be stored (reduces memory
requirement)



EP vs SEP

Algorithm 1 EP

Algorithm 3 SEP

1: choose a factor f, to refine: 1:
2: compute cavity distribution  2:

q-n(0) o< q(6)/fn(6)

3: compute tilted distribution  3:

Pn(8) x p(xn|0)g-n(0)

4: moment matching;: 4:

fn(8) < proj[pn(6)]/q-n(6)

5: inclusion: 5:

q(6) < q-n(0)fn(6)

6:

choose a datapoint &, ~ D:
compute cavity distribution
q-1(0) x q(6)/f(6)
compute tilted distribution
Pn(8) x p(xn|0)q-1(6)

moment matching:

frn(6) < proj[pn(0)]/q-1(0)

inclusion:

q(0) < q-1(0)fr(0)
implicit update:

£(6) « f(O)' "N fu(O) W



Parallel SEP

Minibatch version of SEP that operates on M data points in
parallel

Parallel EP: q(6) = po(6) [1,.2m n(0) [ 1 fm(6)
Parallel SEP: q(0) = po(8)foi(8)N"MT1,,, fm(0)
Parallel SEP (implicit update):

fnew(a) = o/d(0)1_M/N H%:1 fm(0)1/N

M = 1 recovers vanilla SEP

M = N leads to AEP [Dehaene and Barthelmé, 2015]



Distributed SEP

e Strong assumption: Dataset can be partitioned into K
subsets such that likelihood contribution within each
subset is similar

¢ |dea: use different approximation within each of the
subsets

* q(6) o po(6) [Tk—1 f(8)
e Approximating multiple likelihood terms requires MCMC in
general. DSEP uses SEP within each subset.

e K =1 recovers SEP and K = N recovers EP



DEP vs DSEP vs DAEP

Algorithm 6 DEP

Algorithm 7 DSEP

Algorithm 8 DAEP

1: compute cavity distribution

q-x(0) o< q(6)/ f(6)
2: compute tilted distribution
P (0) o< p(Dx|0)g— ()
3: moment matching:
fx(0) < proj[px(0)]/q-x(0)

1: compute cavity distribution
q-1(0) = q(6)/£x(6)

2: choose a datapoint @, ~ Dy

3: compute tilted distribution
Pr(0) o< p(xn|60)g-1(0)

4: moment matching:
fi(8) « proj[57(6)]/9-1(8)

5: inclusion:

Je(8) = f(0)' Y/ Nk f1(6) /N

1: compute cavity distribution
q-1(0) o« q(0)/£x(6)

2: for each x,, € Dy:

3:  compute tilted distribution
7 (6) o< p(xn|60)g-1(0)

4: moment matching:
T%(6) « proj[pi (0)]/q-1(6)

5: inclusion:

fe(@)e « I1, f2(0)



Relationship to other methods

VMP
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EP

K=N
DSEP

multiple
ipproximating
factors
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par-EP divergence
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par-SEP
SEP /:N
parallel

M=1 minibatch
updates



B) Relationships between fixed points

L

EP ‘/—\
AEP
SEP \_/

— » Same
——— same in expectation

—» samein large data limit
(conditions apply)



Bayesian probit regression on toy data
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e Toy data: N = 5000, D = 4. Ground truth: NUTS

e x sampled from Gaussian distribution (a) or from a Mixture
of Gaussians with J = 5 components (b)



Bayesian probit regression on MNIST

test log-likelihood
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Table 1:

Results on UCI: SEP (K=1, M=1)

Average test results all methods on Probit regression. All methods capture a good posterior
mean, however EP outperforms ADF in terms of test log-likelihood on almost all the datasets, with SEP
performing similarly to EP.

RMSE test log-likelihood

Dataset ADF SEP EP ADF EP

Australian 0.32840.0127 0.325+0.0135 0.330+0.0133 -0.634+0.010 -0.631+0.009 -0.631+0.009
Breast 0.037+0.0045 0.034+0.0034 0.034+0.0039 -0.100+£0.015 -0.094+0.011 -0.093+0.011
Crabs 0.062+0.0125 0.040+0.0106 0.048+0.0117 -0.2904+0.010 -0.177+0.012 -0.217+0.011
Ionos 0.126+0.0166 0.130+0.0147  0.131+£0.0149 -0.373+£0.047 -0.336+£0.029 -0.324+0.028
Pima 0.24240.0093  0.244+0.0098 0.241+0.0093 -0.516+0.013 -0.5144+0.012 -0.513+0.012
Sonar 0.198+0.0208 0.198+0.0217  0.198+0.0243 -0.461+0.053 -0.418+0.021 -0.415+0.021




Results using Probabilistic BackProp

Table 2: Average test results for all methods. Datasets are also from the UCI machine learning repository.
RMSE test log-likelihood

Dataset ADF SEP EP ADF SEP EP
Kin8nm  0.098+0.0007 0.088+0.0009 0.089+0.0006 0.896+0.006 1.013+£0.011 1.005+0.007
Naval 0.006+0.0000 0.002+0.0000 0.004+0.0000 3.731+£0.006 4.590+0.014 4.207+0.011
Power 4.12440.0345 4.165+£0.0336 4.1914+0.0349 -2.837+0.009 -2.846+0.008 -2.852+0.008
Protein  4.727+£0.0112 4.670+0.0109 4.748+0.0137 -2.973+0.003 -2.961+0.003 -2.979+0.003
Wine 0.635+0.0079 0.650+0.0082 0.637+0.0076 -0.968+0.014 -0.976=x0.013 -0.958+0.011
Year 8.879+ NA 8.9224+NA 8.914+NA -3.603+ NA  -3.924+NA -3.929+NA




Memory consumption

Dataset N d MB reduction
Kin8nm 8,192 8 58MB
Naval 11,934 16 147MB
Power Plant 9,568 4 37MB
Protein 45,730 9 694MB
Wine 1,599 11 14MB
Year 515,340 90 65107TMB
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Figure 7: (a) Memory reduction figures on regression datasets. (b) Performance of EP methods on
Bayesian logistic regression with sampling moment computations.



Mixture of Gaussians for clustering
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Figure 4: Posterior approximation for the mean of the Gaussian components. (a) shows posterior ap-
proximations over the cluster means (98% confidence level). The coloured dots indicate the true label
(top-left) or the inferred cluster assignments (the rest). In (b) we show the error of the approximations
as measured by the averaged Frobenius norm of the difference between the the closest means posterior
samples and EP approximations, mean (top) and covariance (bottom).



Stochastic power EP

Algorithm 4 PEP

Algorithm 5 Stochastic PEP

1: choose a factor f, to refine:

2: compute cavity distribution
q-n(0) < q(0)/1(6)"/?

3: compute tilted distribution
Bn(6) ox p(@n]0)Pg-n(6)

4: moment matching:
£(6) 4 [proj[in(6)]/a-n(8)]°

5: inclusion:

q(6) + () f(6)/ £ (6)

1: choose a datapoint &, ~ D:
2: compute cavity distribution
g-1(6) x a(8)/7(6)"/*
3: compute tilted distribution
5n(6) < p(@n|0)"/Fq-1(6)
4: moment matching:
fn(8) ¢ [proj[in(8)l/q-1(6))°
5: inclusion:
q(6) + q(0)f~(0)/1(6)
6: implicit update:
1(6) « £(8) ¥ fu(O) ¥




Thank you!
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