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Motivation

• Expectation propagation [Minka, 2001]
– popular alternative to variational Bayes (VB) for

approximate Bayesian inference
– EP iteratively minimizes KL(p||q) whereas VB minimizes

KL(q||p)
– q is usually exponential family
– EP: Iterative minimization as apposed to Assumed Density

Filtering (ADF) where a data point is processed just once
– works well for log-concave unimodal posterior distributions

• EP is memory-intensive and does not scale well to big data
• Idea: Can we do stochastic EP (similar to SVI for VB)?

– Stochastic expectation propagation (SEP) [Li et al., 2015]
– Expectation Propagation in the large-data limit

[Dehaene and Barthelmé, 2015] introduces Averaged EP
(AEP) which is easier to theoretically analyze than EP
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Overview

• SEP: Stochastic EP that operates on mini-batches of data
• Global posterior approximation which is updated locally
• Similar predictive performance as EP
• Memory requirement reduced by a factor of N compared to

EP
• Much better uncertainty estimate than ADF
• Interesting connections to related work on distributed

Bayesian inference (SMS: [Xu et al., 2014], EP as a way of
life [Gelman et al., 2014])
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EP vs ADF

p(θ|D) ∝ p0(θ)
N∏

n=1

p(xn|θ) (1)

p(θ|D) ≈ q(θ) ∝ p0(θ)
N∏

n=1

fn(θ) (2)
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Problems with EP

• Computing cavity distribution requires removal of current
approximation

• Approximating each factor individually leads to O(N)
storage

• ADF does not require storage of individual factors
• ADF cannot use multiple passes through the data
• Uncertainty estimates of ADF are not well calibrated
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Stochastic EP

• Idea: use a single factor which is the geometric mean of
the individual approximations

f (θ)N =
N∏

n=1

fn(θ) ≈
N∏

n=1

p(xn|θ) (3)

• Interpretation:
– version of EP in which the approximating factors are tied
– corrected version of ADF that prevents overfitting.

• Individual factors need not be stored (reduces memory
requirement)
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EP vs SEP
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Parallel SEP

• Minibatch version of SEP that operates on M data points in
parallel

• Parallel EP: q(θ) = p0(θ)
∏

n 6=m fn(θ)
∏

m fm(θ)

• Parallel SEP: q(θ) = p0(θ)fold(θ)
N−M ∏

m fm(θ)
• Parallel SEP (implicit update):

fnew (θ) = fold(θ)
1−M/N ∏M

m=1 fm(θ)1/N

• M = 1 recovers vanilla SEP
• M = N leads to AEP [Dehaene and Barthelmé, 2015]
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Distributed SEP

• Strong assumption: Dataset can be partitioned into K
subsets such that likelihood contribution within each
subset is similar

• Idea: use different approximation within each of the
subsets

• q(θ) ∝ p0(θ)
∏K

k=1 fk (θ)Nk

• Approximating multiple likelihood terms requires MCMC in
general. DSEP uses SEP within each subset.

• K = 1 recovers SEP and K = N recovers EP
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DEP vs DSEP vs DAEP
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Relationship to other methods
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Bayesian probit regression on toy data

• Toy data: N = 5000,D = 4. Ground truth: NUTS
• x sampled from Gaussian distribution (a) or from a Mixture

of Gaussians with J = 5 components (b)

13



Bayesian probit regression on MNIST
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Results on UCI: SEP (K=1, M=1)

15



Results using Probabilistic BackProp
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Memory consumption
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Mixture of Gaussians for clustering
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Stochastic power EP
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Thank you!
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