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Detecting nonlinear associations

e Aim: identify “interesting relationships” between pairs of (scalar)
variables in “large data sets”

o functional relationships and their “superpositions”

o equitability: “similar scores to equally noisy relationships of different
types”

o for functional relationships: roughly R? relative to regression function

e Maximal Information Coefficient (MIC)
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You kind of mean dependence, right?

o I(X;Y)=0iff X LY
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-
You kind of mean dependence, right?
o I(X;Y)=0iffX 1LY

@ Reshef et al: standard estimators (k-NN, Kraskov, Stogbauer and
Grassgerger, 2004) of MI do not satisfy equitability

Mutual Information (Kraskov et al.)
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|
Binning the data

e “...a grid can be drawn on the scatterplot that partitions the data to
encapsulate that relationship...”
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|
Binning the data

e “...a grid can be drawn on the scatterplot that partitions the data to
encapsulate that relationship...”

n=20

° pix,y) =5/20=0.25

y N o | ply)=10/20=105

X

p(x)=8/20=04

o naive Ml estimate: /(X;Y)~I(x;y) =3, p(x,y)log
o I(x;y) < min{H(x), H(y)} < log, (min{nx, ny})
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-
Binning the data (2)

@ explore grids of nx-by-n, resolution — find a grid that maximizes
mutual information & normalize — output a number my, »,

Columns

E!i
[}

Rows
3

Dino S. (Gatsby Unit) Reshef et al, 2011 February 14, 2013 5/ 19



Binning the data (3)
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MATHEMATICS

A Correlation for the 21st Century

Terry Speed

ost scientists will be familiar

with the use of Pearson’s correla-

tion coefficient 7 to measure the
strength of association between a pair of
ables: for example, between the height
of a child and the average height of their
parents (r = 0.5; see the figure, panel A),
or between wheat yield and annual rain-
fall (= 0.75, panel B). However, Pearson’s
r captures only linear association, and its
usefulness is greatly reduced when asso-
ciations are nonlinear. What has long been
needed is a measure that quantifies associa-
tions between variables generally, one that
reduces to Pearson’s in the linear case, but
that behaves as we'd like in the nonlinear
case. On page 1518 of this issue, Reshef
et al. (1) introduce the maximal informa-
tion coefficient, or MIC, that can be used
to determine nonlinear correlations in data
sets equitably.

Dino S. (Gatsby Unit)

Ysidro Edgeworth and later Karl Pearson
gave us the modern formula for estimating
r, and it very definitely required a manual
or electromechanical calculator to convert
1000 pairs of values into a correlation coef-
ficient. In marked contrast, the MIC requires
a modern digital computer for its calcula-
tion; there is no simple formula, and no-
one could compute it on any calculator. This
is another instance of computer-intensive
methods in statistics (3).

It is impossible to discuss measures of
association without referring to the concept
of independence. Events or measurements
are termed probabilistically independent if
information about some does not change the
probabilities of the others. The outcomes of
successive tosses of a coin are independent
events: Knowledge of the outcomes of some
tosses does not affect the probabilities for

Reshef et al, 2011

A novel statistical approach has been
developed that can uncover nonlinear
associations in large data sets.

the outcomes of other tosses. By conven-
tion, any measure of association between
two variables must be zero if the variables
are independent. Such measures are also
called measures of dependence. There are
several other natural requirements of a good
measure of dependence, including symme-
try (4). and statisticians have struggled with
the challenge of defining suitable measures
since Galton introduced the correlation
coefficient. Many novel measures of asso-
ciation have been invented, including rank
correlation (5, 6); maximal linear correla-
tion after transforming both variables (7).,
which has been rediscovered many times
since; the curve-based methods reviewed
in (8); and, most recently, distance correla-
tion (9).

To understand where the MIC comes
from, we need to go back to Claude Shan-
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Tangled relationships unpicked
A statistical method discovers hidden correlations in complex data.

Philip Ball
15 December 2011

The US humorist Evan Esar once called statistics the science of

s print
producing unreliable facts from reliable figures. An innovative

& emai
technique now promises to make those facts a whole lot more < "
dependable. 3 rights & permissions

¥ sharebookmark

Brothers David Reshef of the Broad Institute of MIT and Harvard in
Cambridge, Massachusetts, Yakir Reshef, now at the Weizmann

Insitute of Science in Rehovot, Israel, and their coworkers have devised a method to extract from
complex sets of data relationships and trends that are invisible to other types of statistical analysis

They describe their approach in Science today

“This appears to be an outstanding achievement.”
says Douglas Simpson, a statistician at the
University of llinois at Urbana-Champaign. “It
opens up whole new avenues of inquiry.”

Dizzying complexity
Here is the basic problem. You have collected lots

“a method to extract from complex sets of data relationships and trends
that are invisible to other types of statistical analysis”

o S. (Gatsby Unit) Reshef et al, 2011
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Equita ble? (Kinney and Atwal 2013)

@ No explicit definition given by Reshef et al
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-
Equita ble? (Kinney and Atwal 2013)

@ No explicit definition given by Reshef et al
Model: Y = f(X) 4 n, where 1 can depend on X through f(X) only, i.e.,
X — f(X) — Y forms a Markov chain.
Definition (Reshef et al notion of R?-equitability)

In the large data limit: D[X; Y] = g (R?[f(X); Y]) for some function g
that does not depend on f.
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-
Not very equitable

@ Kinney and Atwal (2013) prove: R?-equitability is impossible for
non-trivial D.
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-
Not very equitable

@ Kinney and Atwal (2013) prove: R?-equitability is impossible for
non-trivial D.

o Proof: Let Y = X + 1, with 1L X, and let h be any invertible function.
We can then write Y = h(X) + 7/, where ¥ = h=1(h(X)) — h(X) + 7 is a
valid noise term, as it depends on X through h(X) only. Therefore, one
should have g (R?[X; Y]) = g (R?[h(X); Y]) Vh, which is impossible as R?
is not invariant to general invertible transformations. Thus g, and therefore
D, do not depend on the datal
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Not very equitable (2)

Increasing noise
E I=0,MIC=10 F I=2.0,MIC=1.0 G 1=1.0,MIC=1.0
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Alternative notion by Kinney and Atwal (2013)

e Self-equitability (SE): D[X; Y] = D[f(X); Y] whenever
X — f(X) — Y (log-pints vs. squared tea spoons)

e Data-processing equitability (DPE): For a Markov chain
X —Z—Y,D[X;Y] <D[Z;Y], ie., processing cannot increase
dependence.

e DPE = SE
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Alternative notion by Kinney and Atwal (2013)

e Self-equitability (SE): D[X; Y] = D[f(X); Y] whenever
X — f(X) — Y (log-pints vs. squared tea spoons)

e Data-processing equitability (DPE): For a Markov chain
X —Z—Y,D[X;Y] <D[Z;Y], ie., processing cannot increase
dependence.

e DPE = SE
o MIC violates both, Ml satisfies both

o We discuss the notion of equitability as a desirable heuristic property,
as underscored by our use of words like “roughly equal” and “similar”
instead of “equal” when discussing it. Philosophically, we have been
using equitability as an approximate property. (M. Mitzenmacher on A.
Gelman’s blog)
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A MIC vs. R? B Ivs. R C Ivs. R?
5000 data points 5000 data points large data limit
1 < 1
.
y'
08 L B 0.8
P
06 p“"?’ 0.6
= R =
& k713 &
04 ey A ~ 04
Ay
5
02f2™ 02
of: 0
02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
RE[Hx)3y] RE[(x):y] RE[Hx)3y)
D MIC vs. MIC E Ivs. | F Monatonicity of
5000 data points 5000 data points noiseless relationships
1
+ 1.00 0.97 0.02
0.8 + 1.00 0.48 + 0.02
+ 1.00 + 035 -+ 001
=06
X
5 + 1.00 0.10 + 0.00
s
04 + 1.00 0.09 + 0.00
02 1.00 0.07 + 0.00
0.98 0.04 + 0.00
0

0 0.2 0.8 1

04 06
MIC[f(x);y]

L2[X; Y] =1-—272'XY

Dino S. (Gatsby Unit)

0.4 0.6
LA 3y

0.8 1

(Kinney and Atwal, 2013): “...
offered by Reshef et al was artifactual...”

Reshef et al, 2011

the simulation evidence
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So what if it is not really equitable?

@ It's a "powerful” technique anyway...
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.
So what if it is not really equitable?

@ It's a "powerful” technique anyway...

@ ...at least philosophically.
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MIC vs. dCor

Linear Quadratic
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@ Simon and Tibshirani (2011): MIC has lower power than dcor, in every case

Moise Level

except the somewhat pathological high-frequency sine wave. MIC is

sometimes less powerful than Pearson correlation as well, the linear case

being particularly worrisome.
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MIC vs. dCor (2)

Power
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@ Simon and Tibshirani (2011): MIC has serious power deficiencies, and hence
when it is used for large-scale exploratory analysis it will produce too many

false positives.
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At least it's fast to compute?

@ Science magazine podcast: [t really can be applied to just about any
data set. (D. Reshef)

Dino S. (Gatsby Unit) Reshef et al, 2011 February 14, 2013 18 / 19



.
At least it's fast to compute?

@ Science magazine podcast: [t really can be applied to just about any
data set. (D. Reshef)

e Large data sets: many (x-y) pairs of variables with D =1,
N < 1000.

Dino S. (Gatsby Unit) Reshef et al, 2011 February 14, 2013 18 / 19



.
At least it's fast to compute?

@ Science magazine podcast: [t really can be applied to just about any
data set. (D. Reshef)

e Large data sets: many (x-y) pairs of variables with D =1,
N < 1000.

e We observed the MIC algorithm of Reshef et al. to run ~ 600 times
slower than the Kraskov er al. mutual information estimation...
(Kinney and Atwal 2013)
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