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Detecting nonlinear associations

Aim: identify �interesting relationships� between pairs of (scalar)

variables in �large data sets�

functional relationships and their �superpositions�

equitability: �similar scores to equally noisy relationships of di�erent

types�

for functional relationships: roughly R2 relative to regression function

Maximal Information Coe�cient (MIC)
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You kind of mean dependence, right?

I (X ;Y ) = 0 i� X ⊥⊥ Y

Reshef et al: standard estimators (k-NN, Kraskov, Stogbauer and

Grassgerger, 2004) of MI do not satisfy equitability

sample size: 500
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Binning the data

�...a grid can be drawn on the scatterplot that partitions the data to

encapsulate that relationship...�

naïve MI estimate: I (X ;Y ) ≈ I (x ; y) =
∑

x ,y p(x , y) log
p(x ,y)

p(x)p(y)

I (x ; y) ≤ min{H(x),H(y)} ≤ log2 (min {nx , ny})
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Binning the data (2)

explore grids of nx -by-ny resolution → �nd a grid that maximizes

mutual information & normalize → output a number mnx ,ny
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Binning the data (3)

MIC [X ;Y ] = max
nxny≤B

mnx ,ny = max
nxny≤B

max
nx×ny grids

I (x ; y)

log2 (min {nx , ny})
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sample size: 500
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�a method to extract from complex sets of data relationships and trends

that are invisible to other types of statistical analysis�
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Equitable? (Kinney and Atwal 2013)

No explicit de�nition given by Reshef et al

Model:Y = f (X ) + η, where η can depend on X through f (X ) only, i.e.,
X → f (X )→ Y forms a Markov chain.

De�nition (Reshef et al notion of R2-equitability)

In the large data limit: D[X ;Y ] = g
(
R2 [f (X );Y ]

)
for some function g

that does not depend on f .
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Not very equitable

Kinney and Atwal (2013) prove: R2-equitability is impossible for

non-trivial D.

Proof: Let Y = X + η, with η ⊥⊥ X , and let h be any invertible function.
We can then write Y = h(X ) + η′, where η′ = h−1(h(X ))− h(X ) + η is a
valid noise term, as it depends on X through h(X ) only. Therefore, one
should have g

(
R2 [X ;Y ]

)
= g

(
R2 [h(X );Y ]

)
∀h, which is impossible as R2

is not invariant to general invertible transformations. Thus g , and therefore
D, do not depend on the data!
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Not very equitable (2)
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Alternative notion by Kinney and Atwal (2013)

Self-equitability (SE): D[X ;Y ] = D[f (X );Y ] whenever
X → f (X )→ Y (log-pints vs. squared tea spoons)

Data-processing equitability (DPE): For a Markov chain

X → Z → Y , D[X ;Y ] ≤ D[Z ;Y ], i.e., processing cannot increase

dependence.

DPE =⇒ SE

MIC violates both, MI satis�es both

We discuss the notion of equitability as a desirable heuristic property,
as underscored by our use of words like �roughly equal� and �similar�
instead of �equal� when discussing it. Philosophically, we have been
using equitability as an approximate property. (M. Mitzenmacher on A.
Gelman's blog)
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L2[X ;Y ] = 1− 2−2I [X ;Y ] (Kinney and Atwal, 2013): � ...the simulation evidence

o�ered by Reshef et al was artifactual...�
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So what if it is not really equitable?

It's a �powerful� technique anyway...

...at least philosophically.
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MIC vs. dCor

Simon and Tibshirani (2011): MIC has lower power than dcor, in every case

except the somewhat pathological high-frequency sine wave. MIC is

sometimes less powerful than Pearson correlation as well, the linear case

being particularly worrisome.
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MIC vs. dCor (2)

Simon and Tibshirani (2011): MIC has serious power de�ciencies, and hence

when it is used for large-scale exploratory analysis it will produce too many

false positives.
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At least it's fast to compute?

Science magazine podcast: It really can be applied to just about any

data set. (D. Reshef)

Large data sets: many (x-y) pairs of variables with D = 1,

N ≤ 1000.

We observed the MIC algorithm of Reshef et al. to run ∼ 600 times

slower than the Kraskov er al. mutual information estimation...

(Kinney and Atwal 2013)
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