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In�nite dimensional exponential family?

Aim: construct an in�nite-dimensional exponential family, on which

estimation theory can be built

In particular: theory of consistent estimation with a �nite sample

A subset of an RKHS as a functional parameter space

Maximum-Likelihood ill-posed

Pseudo-Maximum-Likelihood: restrict attention to a sequence of �nite

dimensional submanifolds, where dimensionality increases with the

sample size
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Introduction

For simplicity, let X = [0, 1], and k : X × X → R be a bounded

continuous kernel, with RKHS Hk .

assumption 0: Hk contains the constant functions, u(x) = c . If it

does not, then consider k(x , y) + 1 instead. This does. (This

assumption is made so that Hk is closed under subtracting constants)

Since k is a bounded kernel on bounded domain, integrals
´
u(x)dx

and
´
eu(x)dx converge ∀u ∈ Hk .

Let T :=
{
u ∈ Hk :

´
u(x)dx = 0

}
. In other words, consider the

uniform distribution 1 on X , and de�ne its kernel embedding

µ1 =
´
k(·, x) · 1dx ∈ Hk . Then, T = µ⊥1 , as

´
u(x)dx = 〈u, µ1〉Hk

.

Since Hk includes constants, u −
´
u(x)dx ∈ T , ∀u ∈ Hk
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Densities parametrized by RKHS functions

Now, pick u ∈ T , and de�ne:

Ψ(u) = log

ˆ
eu(x)dx

Lemma

∀u ∈ T, eu−Ψ(u) is a valid probability density function on X , and map

ξ : u 7→ eu−Ψ(u) is one-to-one.

Proof.

ξ(u) = ξ(v) =⇒ u(x)− v(x) = Ψ(v)−Ψ(u) = const. =⇒
´
u(x)dx −´

v(x)dx = that same constant =⇒ that constant must be zero.
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S = ξ(T ) is now a set of probability density functions on X associated

to the kernel k , which inherits the Hilbertian structure of T ⊂ Hk

(exponential Hilbert manifold).

Let's write fu for ξ(u) for short (read: �density with parameter u�).

We get the usual stu� with fancier names - we can take Fréchet

derivatives of Ψ:

DuΨ(v) = EX∼fu [v(X )] = 〈v , µu〉Hk

D2
uΨ(v1, v2) = CovX∼fu [v1(X ), v2(X )] = 〈v1,Σuv2〉Hk

where:

µu := Efu [k(·,X )]

Σu := Efu [k(·,X )⊗ k(·,X )]− Efu [k(·,X )]⊗ Efu [k(·,X )] ,

are the kernel embedding and the kernel covariance operator of density

fu.
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In the exponential family language:

1 u ∈ T is the natural parameter of fu, and k(·, x) is the su�cient

statistic, as fu ∝ e〈u,k(·,x)〉 = eu(x)

2 µu ∈ Hk is the mean parameter of fu, as it is the mean of the

su�cient statistic

For characteristic kernels, the mapping P 7→ µP is injective. In

particular, fu 7→ µu is injective.

So, there is a reparametrization T 3 u 7→ µu ∈ Hk

Note that there are certainly µu /∈ T . In particular,

u = 0 ∈ T ⇒ fu = 1⇒ µu = µ1⊥T . Conclusion: the mean

parameters and the natural parameters do not have the same domain.
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KL in S

Kullback-Leibler divergence in the exponential manifold:

KL (fu ‖fv ) =

ˆ
fu(x) log

fu(x)

fv (x)
dx

=

ˆ
fu(x) [u(x)−Ψ(u)− v(x) + Ψ(v)] dx

= Ψ(v)−Ψ(u) + 〈u − v , µu〉Hk
.
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KL in S (2)

Theorem (Pythagorean KL-relation)

Consider a closed subspace V ⊂ T, let f∗ ∈ S, and set:

uopt = arg min
u∈V

KL (f∗ ‖fu )

i.e., fuopt is the KL-nearest density in ξ(V ) to f∗. Then ∀u ∈ V :

KL (f∗ ‖fu ) = KL
(
f∗
∥∥fuopt )+ KL

(
fuopt ‖fu

)
.

The KL divergence between f∗ and fu that is parametrized by a subspace V

of T can be broken down as the KL divergence between f∗ and the nearest

density in that subspace (approximation error) plus the KL divergence

between the best approximator and a given density (estimation error).
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RKHS norm and KL divergence

Lemma

Let ‖un − u‖Hk
= o(αn), where limn→∞ αn = 0. Then

KL (fu ‖fun ) = o(αn).
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RKHS norm and KL divergence

Proof.

Start with:

KL (fu ‖fun ) ≤ |Ψ(un)−Ψ(u)|+
∣∣∣〈un − u, µu〉Hk

∣∣∣ .
By Taylor-expansion, we obtain:

|Ψ(un)−Ψ(u)| =

∣∣∣∣〈un − u, µu〉+
1

2
〈un − u,Σũ(un − u)〉

∣∣∣∣
≤ ‖un − u‖

[
‖µu‖+

1

2
λmax ‖un − u‖

]
, and thus:

KL (fu ‖fun ) ≤ ‖un − u‖
[
2 ‖µu‖+

1

2
λmax ‖un − u‖

]
,

where ũ is a convex combination of un and u and λmax is the largest

eigenvalue of Σũ.
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Maximum Likelihood

Observe data {Xi}ni=1

i .i .d .∼ fu∗ . Consider the log-likelihood:

Ln(u) =
1

n

n∑
i=1

log p(Xi |u)

=
1

n

n∑
i=1

u(Xi )−Ψ(u)

=

〈
u,

1

n

n∑
i=1

k(·,Xi )

〉
−Ψ(u)

=
〈
u, µ̂(n)

〉
−Ψ(u)
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Maximum Likelihood (2)

Di�erentiate:

DuLn(v) =
〈
v , µ̂(n) − µu

〉

ML solution is trivial! Set the mean parameter to the empirical mean

parameter and solve for u:

µu = µ̂(n)

oops: µ̂(n) does not correspond to any natural parameter u ∈ T
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Maximum Likelihood (3)

The inverse mapping from the mean parameter to the natural

parameter is not bounded

the derivative of map u 7→ µu : since µu can be identi�ed as the �rst
derivative of the cumulant generating function Ψ, i.e., DuΨ = 〈·, µu〉,
the derivative of this map is Σu (kernel covariance operator). This is
known to be a trace-class operator, so it has arbitrarily small positive
eigenvalues.

If µ̂(n) would correspond to some natural parameter û ∈ T , then a

distribution with the continuous density e û(x)−Ψ(û) and the empirical

distribution 1
n

∑n
i=1 δXi

must have the same kernel embedding. Recall

that this is impossible because, e.g., for characteristic kernels, the

mapping P 7→ µP is injective!
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distribution with the continuous density e û(x)−Ψ(û) and the empirical
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Pseudo-MLE

First, while we cannot go from the mean parameters to the natural

parameters, it is still true that mean parameters are useful, namely:

Theorem (
√
n-consistency of the empirical embedding estimator)∥∥µ̂(n) − µu∗
∥∥
Hk

= OP(1/
√
n).
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Pseudo-MLE (2)

1 De�ne a series of �nite-dimensional subspaces of T :
{
T (n)

}∞
l=1

, and

the n-th Pseudo-MLE:

û(n) = arg max
u∈T (n)

〈
u, µ̂(n)

〉
−Ψ(u)

(the �nite-dimensional MLE problem over T (n) which we can solve for

u).

2 In addition, introduce:

u
(n)
∗ = arg min

u∈V
KL (f∗ ‖fu )

= arg max
u∈T (n)

〈u, µu∗〉 −Ψ(u)

(the best approximator to the true u∗ in T (n)).
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û(n) = arg max
u∈T (n)

〈
u, µ̂(n)

〉
−Ψ(u)

(the �nite-dimensional MLE problem over T (n) which we can solve for

u).

2 In addition, introduce:

u
(n)
∗ = arg min

u∈V
KL (f∗ ‖fu )

= arg max
u∈T (n)

〈u, µu∗〉 −Ψ(u)

(the best approximator to the true u∗ in T (n)).

Dino S. (Gatsby Unit) Exponential RKHS family October 18, 2012 15 / 21



Assumptions

assumption 1: ∀u∗∥∥∥u∗ − u
(n)
∗

∥∥∥
Hk

= o(γn), γn → 0,

which means that T (n) approximates T with a sub-γn rate as n→∞

assumption 2: the sequence of subspaces is chosen so that the

smallest positive eigenvalues λ(n) of Σu restricted to T (n) decrease

slowly enough (slower than 1/
√
n):

1√
nλ(n)

= o(εn), εn → 0.
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Consistency of Pseudo-MLE

Theorem

KL (f∗ ‖fû(n) ) = op (max {γn, εn})
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Proof sketch

Break up KL in two parts:

KL (f∗ ‖fû(n) ) = KL
(
f∗

∥∥∥f
u

(n)
∗

)
+ KL

(
f
u

(n)
∗
‖fû(n)

)

The �rst one is o(γn) by assumption 1, and Lemma connecting RKHS

norm and KL divergence

For the second term, we will need to show that the estimation error is

op(εn), i.e.,

P
[∥∥∥û(n) − u

(n)
∗

∥∥∥ ≥ εn] → 0
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Proof sketch (2)

∥∥∥û(n) − u
(n)
∗

∥∥∥ ≥ εn implies that we have found a maximizer û(n) of

Ln(u) > Ln(u
(n)
∗ ) outside the εn- ball centered at u

(n)
∗ in T (n).

Consider the Taylor expansion of Ln around u
(n)
∗ :

Ln(û(n))− Ln(u
(n)
∗ ) =

DuLn

∣∣∣∣∣
u=u

(n)
∗

[û(n) − u
(n)
∗ ] +

1

2
D2

u
Ln

∣∣∣∣∣
u=u

(n)
∗

[û(n) − u
(n)
∗ , û(n) − u

(n)
∗ ]

=
〈
û(n) − u

(n)
∗ , µ̂(n) − µ

u
(n)
∗

〉
− 1

2

〈
û(n) − u

(n)
∗ ,Σũ

(
û(n) − u

(n)
∗

)〉
=

〈
û(n) − u

(n)
∗ , µ̂(n) − µu∗

〉
− 1

2

〈
û(n) − u

(n)
∗ ,Σũ

(
û(n) − u

(n)
∗

)〉
≤

∥∥∥û(n) − u
(n)
∗

∥∥∥ [∥∥∥µ̂(n) − µu∗
∥∥∥− 1

2
λ(n)εn

]
.
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Proof sketch (3)

P
[∥∥∥û(n) − u

(n)
∗

∥∥∥ ≥ εn] ≤ P
[∥∥∥µ̂(n) − µu∗

∥∥∥ ≥ 1

2
λ(n)εn

]
≤ P

[∥∥∥µ̂(n) − µu∗
∥∥∥ ≥ 1√

n

]
→ 0,

by the
√
n-consistency of the empirical embedding estimator.
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Extensions and Discussion

domain not bounded: dx → φ(x)dx , for some density φ, and
u 7→ eu−Ψ(u)φ, and restrict attention to an open subset of T for

which densities are well de�ned.

e.g., for X = R, φ(x) = 1√
2π
e−

x
2

2 , and k(x , y) = (1 + xy)2, we recover

Gaussian densities.

kernel not a bounded function: more u's to discard

Pseudo MLE is consistent, provided that a sequence of subspaces is

chosen in a particular way

How to construct such sequences of subspaces?
Do they exist for any kernels - i.e., ensuring that the approximation
error goes to zero quickly enough while the smallest eigenvalues decay
slowly enough?
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