

Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex

Nicholas E. Bowman,^{1,*} Konrad P. Kording,² and Jay A. Gottfried^{1,*} ¹Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA ²Rehabilitation Institute of Chicago, Northwestern University, Chicago, IL 60611, USA *Correspondence: nickbowman80@gmail.com (N.E.B.), j-gottfried@northwestern.edu (J.A.G.) http://dx.doi.org/10.1016/j.neuron.2012.06.035

Smells Like Teen Spirit

Humans' bad odour discrimination put at use

Loïc Matthey

Tea Talk n°10

13th September 2012

Thursday, 13 September 2012

Introduction

- Temporal evidence integration
 - Good strategy under noisy perception
 - * Well-studied in animals, e.g. monkeys, visual system
 - Random-dot task
 - Drift Diffusion Model
 - * What about other senses, what about humans?
- * This paper:
 - Tests olfactory integration
 - * Finds fMRI correlates of DDM-like ramping activity in humans

N. E. Bowman, K. P. Kording, J. A. Gottfried "Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex" Neuron 75, September 2012

Paper construction

- Verify that odour identification is temporally integrated
- * A DDM model is a good fit to observed RTs
- Look for brain regions showing integration-like responses, with fMRI
 - Human olfactory perception slow, especially for mixtures: able to see the signal using fMRI!

- Identify dominant odour in mixture
 - Two alternative forced-choice discrimination
 - eugenol ("clove") vs citral ("lemon")
 - matched for perceived intensity
 - 8 channels air-dilution olfactometer
 - control proportion each channel contributing to airflow
 - 10 participants
- If integration, more sniffs
 => better performance

- Two blocks of trials
 - * "Fixed-sniff"
 - cued, 1-3 sniffs
 - "Open-sniff"
 - As many as needed to make confident decision
 - Binary decision
 - (also ask for perceptual rating but not used in results)
 - * 18 s between trials, 144 trials total
 - * No feedback

Results

- Accuracy improvement with number of sniffs
- Depends on mixture difficulty

- Results
 - Psychophysical data
 - Consistent with Drift-Diffusion Model

DDM

Drift-diffusion model

 Simple 1D model of evidence integration

$$dx = Adt + cdW, \quad x(0) = 0$$

- * x: accumulated evidence.
 - Positive: towards choice A
 - * Negative: towards choice B
- A: drift term, "momentary evidence" biased towards A or B for a given trial.
- * Noise: $dW \sim N(0, c^2 dt)$
- Easy to solve for distribution, error rates and response times

 $p(x,t) = N(At, c\sqrt{t})$

Match with DDM

- RTs correspond to DDM
- Collapsing-bounds DDM actually better fit.

- Open-sniff experiment
- 2s repetition time, 128x120 voxels
 - * 1 sniff = 2s as well
- Look for voxels correlating with DDM-derived integrated signal responses
 - Per subject fit, DDM profiles, voxel selection.
 - 14 time bins of 2s duration

- Results
 - Found region showing integration-like profiles:
 - Medial Orbitofrontal Cortex (OFC)

- Other activations
 - Anterior Cingulate Coretex (ACC), Cerebellum
 - Do not show significant interaction of condition and time

- Hypothesis: pPC generates momentary olfactory evidence, to be integrated by OFC
- fMRI signal somehow consistent.

Conclusion

- Found temporal integration of olfactory evidence (though weak)
- * Make use of slow poor human performance to their advantage
- * Found OFC correlates with DDM-like integration profiles
 - * Identified region corresponds to putative olfactory projection site in human OFC
 - Rodent single-unit recording study on OFC:
 OFC report decision confidence during postchoice period
- pPC OFC similar to MT LIP in visual perceptual evidence integration in monkeys.

The End

* Questions?

* References:

* M. B. Ahrens, J. M. Li, M. B. Orger, D. N. Robson, A.F. Schier, F. Engert, R. Portugues, "Brain-wide neuronal dynamics during motor adaptation in zebrafish", Nature, published online May 2012

Supplementary slides

Experimental data

- Behavioral data
 - Performance as function of coherence (~difficulty of task)
 - Distribution of response times.
- Neuronal recordings:
 - * Middle Temporal Area (MT)
 - * ~ momentary evidence
 - * Lateral Intraparietal Area (LIP)
 - * ~ accumulated evidence

Sequential Probability Ratio Test

- Assume two populations reporting evidence for two alternatives (left/right):
 *I*₁ and *I*₂
- * Let $Y = I_1 I_2$.
 - If "right" hypothesis is true: $Y \sim p_1(y)$, with mean $\mu_1 > 0$
 - * If "left": $Y \sim p_2(y)$, with mean $\mu_2 < 0$
- * Get iid samples from p_i(y).
- * Goal: Decide as soon as possible which hypothesis is true.
- * Optimal solution: Likelihood-ratio test:

$$Z_2 < \frac{p_1(y_1)p_1(y_2)\dots p_1(y_n)}{p_2(y_1)p_2(y_2)\dots p_2(y_n)} < Z_1$$

* Taking *log*, equivalent to random walk

$$\log Z_2 < \log \frac{p_1(y_1)}{p_2(y_1)} + \dots + \log \frac{p_1(y_n)}{p_2(y_n)} < \log Z_1$$
$$\Rightarrow I^n = I^{n-1} + \log \frac{p_1(y_n)}{p_2(y_n)}$$

Drift Decision Model

 Simple: Analytical formulas for the Error rate and Response time.

Fixed timeFree-responsez: bound $ER = \Phi\left(-\frac{A}{c}\sqrt{T}\right)$ $ER = \frac{1}{1+e^{\frac{2Az}{c^2}}}$ $DT = \frac{z}{A} \tanh\left(\frac{Az}{c^2}\right)$

- * Optimal model, as implements the Neyman-Pearson test.
- Extensions:
 - Drift variability: A ~ $N(m_A, s_A)$
 - Initial position variability:
 x₀ ~ U[-s_x, s_x]