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SUMMARY

Given a noisy sensory world, the nervous system
integrates perceptual evidence over time to optimize
decision-making. Neurophysiological accumulation
of sensory information is well-documented in the
animal visual system, but how such mechanisms
are instantiated in the human brain remains poorly
understood. Here we combined psychophysical
techniques, drift-diffusion modeling, and functional
magnetic resonance imaging (fMRI) to establish
that odor evidence integration in the human olfactory
system enhances discrimination on a two-alternative
forced-choice task. Model-based measures of fMRI
brain activity highlighted a ramp-like increase in
orbitofrontal cortex (OFC) that peaked at the time
of decision, conforming to predictions derived from
an integrator model. Combined behavioral and fMRI
data further suggest that decision bounds are not
fixed but collapse over time, facilitating choice
behavior in the presence of low-quality evidence.
These data highlight a key role for the orbitofrontal
cortex in resolving sensory uncertainty and provide
substantiation for accumulator models of human
perceptual decision-making.

INTRODUCTION

Perceptual decisions are routinely formed in the wake of imper-
fect sensory information. Behavioral performance improves,
especially for noisy or weak sensory inputs, when animals take
more time to sample the stimulus. For example, in the olfactory
domain, a hunting dog may require multiple sniffs to decide
whether a fast-moving rabbit has darted left or right under
a hedgerow; a human may take several sniffs to decide whether
a carton of milk on the verge of spoiling is a wise breakfast
option. The implication is that the nervous system accumulates
sensory information over time for efficient perceptual decision-
making.

Neuroscientific support for the integration of noisy perceptual
evidence is principally based on single-unit studies in
nonhuman animals (Gold and Shadlen, 2007; Newsome et al.,
1989; Platt, 2002; Romo and Salinas, 2001; Schall and Thomp-

son, 1999). In a widely studied visual perceptual paradigm
(Cook and Maunsell, 2002; Hanes and Schall, 1996; Newsome
et al., 1989; Platt and Glimcher, 1999), responses in the lateral
intraparietal area (LIP) show a ramp-like increase during a dot-
motion discrimination task, such that animals make a decision
when neuronal activity surpasses a bound (Roitman and Shad-
len, 2002; Shadlen and Newsome, 2001). Such findings have
helped inform and constrain models of perceptual decision-
making.
Human imaging studies have begun using simple two-choice

tasks to explore the neural substrates of visual perceptual deci-
sion-making (Heekeren et al., 2004; Huettel et al., 2005; Ivanoff
et al., 2008; Noppeney et al., 2010; Ploran et al., 2007; Tosoni
et al., 2008). However, the direct integration of perceptual
evidence over time and its modulation by the degree of sensory
noise are poorly understood. Resolving temporal integration
using functional magnetic resonance imaging (fMRI) is difficult
because humans tend to solve perceptual tasks much faster
than the minimum data-acquisition rate of functional MRI scan-
ners—too few data points are obtained per trial to allow the char-
acterization of signal integration during the decision process.
Traditional wisdom thus holds that fMRI is too slow to capture
sensory integration (Noppeney et al., 2010; Philiastides and
Sajda, 2007).
Here we took advantage of the fact that human olfactory

perception evolves at a slow timescale, particularly for mixtures
of odorants (Laing and Francis, 1989). This natural prolongation
of response times implies that the olfactory system is ideally
suited to characterize perceptual evidence integration with
imaging techniques. In this study, we used fMRI to measure
brain activity while subjects participated in a two-choice olfac-
tory categorization task. Varying the relative proportion of
components in a two-odorant mixture (Abraham et al., 2004;
Boyle et al., 2009; Kepecs et al., 2008; Khan et al., 2008;
Rinberg et al., 2006; Uchida and Mainen, 2003; Wesson
et al., 2008) allowed us to manipulate odor mixture difficulty
and to titrate the speed and accuracy of decision-making.
With a combination of model-based fMRI approaches (O’Doh-
erty et al., 2007), olfactory psychophysics, and deconvolu-
tion techniques (Glover, 1999; Zelano et al., 2009), we first
established behaviorally that human subjects integrate odor
information over time, particularly for difficult decisions, and
then found that the profile of odor-evoked fMRI activity in
medial orbitofrontal cortex (OFC) conforms to model simula-
tions suggestive of evidence accumulation toward a decision
bound.
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✤ Temporal evidence integration
✤ Good strategy under noisy perception

✤ Well-studied in animals, e.g. monkeys, visual system

✤ Random-dot task

✤ Drift Diffusion Model

✤ What about other senses, what about humans? 

✤ This paper:
✤ Tests olfactory integration

✤ Finds fMRI correlates of DDM-like ramping activity in humans

N. E. Bowman, K. P. Kording, J. A. Gottfried
“Temporal Integration of Olfactory Perceptual Evidence in Human Orbitofrontal Cortex”
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✤ Verify that odour identification is temporally integrated

✤ A DDM model is a good fit to observed RTs

✤ Look for brain regions showing integration-like responses, with 
fMRI

✤ Human olfactory perception slow, especially for mixtures: able to see the signal 
using fMRI!
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✤ Identify dominant odour in 
mixture
✤ Two alternative forced-choice 

discrimination
✤ eugenol (“clove”) vs citral 

(“lemon”)
✤ matched for perceived intensity
✤ 8 channels air-dilution 

olfactometer
✤ control proportion each channel 

contributing to airflow
✤ 10 participants

✤ If integration, more sniffs 
=> better performance

RESULTS

Experiment 1: Odor Identification Accuracy Improves
with More Sniffs
Although temporal integration in the visual system is well docu-
mented (Cook andMaunsell, 2002; Hanes and Schall, 1996; Platt
and Glimcher, 1999), there is some controversy about whether
such mechanisms take place in the olfactory system. In rodent
models, a few studies indicate that rats require no more than
one sample (sniff) to disambiguate odor mixtures (Kepecs
et al., 2008; Uchida and Mainen, 2003; Wesson et al., 2008),
while other work suggests that additional sniffs enhance percep-
tual performance (Abraham et al., 2004; Rinberg et al., 2006).
Therefore, in Experiment 1, we set out to establish at the behav-
ioral level whether the human olfactory system integrates infor-
mation over time.
Healthy human subjects (n = 10) participated in a two-alterna-

tive forced-choice (2AFC) odor discrimination task, indicating
which of two odor percepts was dominant in a set of odorant
mixtures ranging between 100% eugenol (‘‘clove’’) and 100%
citral (‘‘lemon’’). Maximal mixture ‘‘difficulty’’ occurred with the

50% eugenol/50% citral mixture (Figure 1A). Stimulus mixtures
were matched for perceived intensity, ensuring that subjects
could not use this perceptual feature to guide their responses
(see Supplemental Experimental Procedures available online).
In separate blocks of trials, subjects were instructed to take
one, two, or three sniffs, being cued to sniff every 2 s during stim-
ulus presentation until the requisite number of sniffs had been
taken. In a fourth block, subjects made additional sniffs until
they reached a sufficient level of certainty regarding which of
the two percepts dominated the mixture (Figure 1B).
The main hypothesis was that if integration exists, then the

perceived quality of information should be greater with longer
sampling times (more sniffs), resulting in higher performance
accuracy. The psychophysical data, arranged into ‘‘less difficult’’
and ‘‘more difficult’’ mixture conditions, clearly show an
improvement in accuracy as subjects took more sniffs (Fig-
ure 1C). The main effect of sniff number, tested across one-,
two-, and three-sniff trials and collapsed across all mixture
conditions, was significant (c2 = 6.34, df = 2, p = 0.042; Friedman
test for related samples), and this was particularly the case for
the more difficult mixtures (c2 = 8.21, df = 2, p = 0.017; Friedman

Figure 1. Task Design and Behavioral Results from Experiment 1
(A) The odorants eugenol (clove) and citral (lemon) were used to create nine different binary odorant mixtures ranging between 100% eugenol and 100% citral in

12.5% steps.

(B) Trial design depicting the two-alternative odor categorization task, with sniffs paced at 2 s intervals. Subjects inhaled when they saw a red crosshair on the

screen (667ms) and exhaled when it was not present (1333ms). In separate blocks, subjects were instructed to make a fixed number of sniffs (one, two, or three),

or an open number of sniffs. Visual cues C and L (clove and lemon, respectively) were used to remind subjects which response button corresponded to which

choice.

(C) Psychophysical data from Experiment 1. Mean binary choice accuracy conditional on number of sniffs is plotted for fixed-sniff blocks (filled circles) and open

sniff blocks (hollow circles). Performance accuracy (mean ± SEM) improved as subjects took more sniffs, particularly for more difficult odor mixtures (*p < 0.05,

compared to one-sniff trials). Error bars: SEM.
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✤ Two blocks of trials
✤ “Fixed-sniff”

✤ cued, 1-3 sniffs
✤ “Open-sniff”

✤ As many as needed to make 
confident decision

✤ Binary decision
✤ (also ask for perceptual rating but 

not used in results)
✤ 18 s between trials, 144 trials total
✤ No feedback
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✤ Results
✤ Accuracy improvement with 

number of sniffs
✤ Depends on mixture difficulty
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✤ Results
✤ Psychophysical data
✤ Consistent with Drift-Diffusion Model 

the integrator function from the DDM, yielding an exponentially
decaying RT distribution. Comparison of these simulated RT
distribution functions to the actual measured data (Figure 3)
clearly demonstrates that the integrator model provides a better
account of behavior than the nonintegrative model, and implies
that the human olfactory system integrates sensory information
over time in order to improve identification accuracy.

Decision Bounds Collapse over Time
An important follow-up question to the above analysis is how
choice accuracy on this task relates to predictions from the
DDM, andwhether it can be used to demonstrate that the system
benefits from increased sampling. Of note, if the decision-bound
criterion is fixed over time (though see next paragraph), then in an
open-response-time task, the accumulated information at the
time of decision will be perceived to be of the same quality—
upon reaching the decision bound—regardless of the time taken
to reach that decision. It therefore follows that in an open-sniff
task, accuracy for a given odor mixture will be the same for all
observedRTs. That being said, formore difficult mixtures, overall
accuracy may actually be lower, because the general quality of
stimulus information is weaker, and subjects will have a greater
probability of making the wrong choice. Plots of response accu-
racy conditional on number of sniffs (Figure 4A) demonstrate this
mean reduction in decision accuracy for the hardest mixtures.
Interestingly, with regard to whether or not decision bounds

are fixed, the fact that choice accuracy slightly declined for
longer trials (compare three-sniff to five-sniff trials in Figure 4A)
implies that subjects might be willing to accept a lower quality
of evidence with the passage of time. This observation would
be consistent with decision bounds that collapse over time,
and such mechanisms have been hypothesized to occur in the
visual system (Resulaj et al., 2009). Indeed a DDM simulation
model with collapsing bounds closely reproduced behavioral
accuracy on the open-sniff task from Experiment 2 (Figure 4B).
Given these findings, we performed a new analysis to test

whether the fixed-bounds (standard) or collapsing-bounds
DDM (cbDDM) provided a better fit to the behavioral data. A
mean cumulative distribution function (CDF) of the RTs from
the standard DDM was significantly different from the mean
CDF of behavioral RTs (p < 0.001; Kolmogorov-Smirnov test),
indicating that this model was a poor fit to the data (Figure 4C).
However, the mean CDF of the cbDDM did not differ significantly
from the mean CDF of behavioral RTs (p = 0.1) (Figure 4D),
demonstrating that a DDM with collapsing bounds more accu-
rately reflects the behavioral data than one with fixed bounds.
Importantly, in terms of model selection, the cbDDM provided
a statistically stronger fit than the standard DDM, even after
adjusting for the number of free parameters using the Bayesian
Information Criterion (BIC) (BIC: 7.61 ± 1.06; p = 0.005, t test;
p = 0.002, Wilcoxon sign-rank test). Model simulations also re-
vealed that the cbDDM provided a significantly better fit than
a stochastic model with collapsing bounds, when tested against
our data from 11 subjects (p = 0.0044, paired t test).

Temporal Evidence Integration Is Unique to OFC
With data across two experiments suggesting that humans
integrate perceptual evidence over time, we next sought to char-
acterize where this integration occurs in the brain. Although
information might be expected to accumulate linearly over
time, when the cbDDM is used to simulate the mean accumu-
lated signal for trials of different lengths, it is evident that the
time course of integration is nonlinear, increasing more rapidly
closer to the time of decision (Figure 5A). Therefore, the behav-
iorally derived parameters from the cbDDM (including drift
rate, diffusion coefficient, and collapse rate) were used, on
a subject-by-subject basis, to model the expected temporal
profile of information integration. These in turn were used to
generate subject-specific fMRI regressors of interest in an
event-related finite-impulse-response (FIR) model, enabling us
to characterize within-trial temporal changes in the fMRI time
series. Note that the absolute value of the integration profile

Figure 3. Psychophysical Data from Experiment 2 Are Consistent with Drift-Diffusion Models of Integration
(A) Group-averaged plots of performance accuracy demonstrate successful categorization of both odorants at each end of the odor mixture spectrum. Color

wheels along the abscissa reflect relative proportions of eugenol-to-citral in each mixture (100% eugenol on the left; 100% citral on the right). The mean

psychometric curve fit (blue line) was averaged across each subject’s individually fitted sigmoidal function. Red curve, ± SEM.

(B) Group-averaged chronometric data demonstrate faster response times (RTs) for easier odor mixtures. Mean curve fit averaged across each subject’s

individually fitted parabolic function.

(C) A histogram plot of the RT data, binned into 2 s intervals, corresponds well to the gamma-like RT distribution arising from an integrative DDM (blue line), as

opposed to the exponential RT distribution arising from a nonintegrative (stochastic) model (gray line).

See also Figure S1.
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the integrator function from the DDM, yielding an exponentially
decaying RT distribution. Comparison of these simulated RT
distribution functions to the actual measured data (Figure 3)
clearly demonstrates that the integrator model provides a better
account of behavior than the nonintegrative model, and implies
that the human olfactory system integrates sensory information
over time in order to improve identification accuracy.

Decision Bounds Collapse over Time
An important follow-up question to the above analysis is how
choice accuracy on this task relates to predictions from the
DDM, andwhether it can be used to demonstrate that the system
benefits from increased sampling. Of note, if the decision-bound
criterion is fixed over time (though see next paragraph), then in an
open-response-time task, the accumulated information at the
time of decision will be perceived to be of the same quality—
upon reaching the decision bound—regardless of the time taken
to reach that decision. It therefore follows that in an open-sniff
task, accuracy for a given odor mixture will be the same for all
observedRTs. That being said, formore difficult mixtures, overall
accuracy may actually be lower, because the general quality of
stimulus information is weaker, and subjects will have a greater
probability of making the wrong choice. Plots of response accu-
racy conditional on number of sniffs (Figure 4A) demonstrate this
mean reduction in decision accuracy for the hardest mixtures.
Interestingly, with regard to whether or not decision bounds

are fixed, the fact that choice accuracy slightly declined for
longer trials (compare three-sniff to five-sniff trials in Figure 4A)
implies that subjects might be willing to accept a lower quality
of evidence with the passage of time. This observation would
be consistent with decision bounds that collapse over time,
and such mechanisms have been hypothesized to occur in the
visual system (Resulaj et al., 2009). Indeed a DDM simulation
model with collapsing bounds closely reproduced behavioral
accuracy on the open-sniff task from Experiment 2 (Figure 4B).
Given these findings, we performed a new analysis to test

whether the fixed-bounds (standard) or collapsing-bounds
DDM (cbDDM) provided a better fit to the behavioral data. A
mean cumulative distribution function (CDF) of the RTs from
the standard DDM was significantly different from the mean
CDF of behavioral RTs (p < 0.001; Kolmogorov-Smirnov test),
indicating that this model was a poor fit to the data (Figure 4C).
However, the mean CDF of the cbDDM did not differ significantly
from the mean CDF of behavioral RTs (p = 0.1) (Figure 4D),
demonstrating that a DDM with collapsing bounds more accu-
rately reflects the behavioral data than one with fixed bounds.
Importantly, in terms of model selection, the cbDDM provided
a statistically stronger fit than the standard DDM, even after
adjusting for the number of free parameters using the Bayesian
Information Criterion (BIC) (BIC: 7.61 ± 1.06; p = 0.005, t test;
p = 0.002, Wilcoxon sign-rank test). Model simulations also re-
vealed that the cbDDM provided a significantly better fit than
a stochastic model with collapsing bounds, when tested against
our data from 11 subjects (p = 0.0044, paired t test).

Temporal Evidence Integration Is Unique to OFC
With data across two experiments suggesting that humans
integrate perceptual evidence over time, we next sought to char-
acterize where this integration occurs in the brain. Although
information might be expected to accumulate linearly over
time, when the cbDDM is used to simulate the mean accumu-
lated signal for trials of different lengths, it is evident that the
time course of integration is nonlinear, increasing more rapidly
closer to the time of decision (Figure 5A). Therefore, the behav-
iorally derived parameters from the cbDDM (including drift
rate, diffusion coefficient, and collapse rate) were used, on
a subject-by-subject basis, to model the expected temporal
profile of information integration. These in turn were used to
generate subject-specific fMRI regressors of interest in an
event-related finite-impulse-response (FIR) model, enabling us
to characterize within-trial temporal changes in the fMRI time
series. Note that the absolute value of the integration profile
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the integrator function from the DDM, yielding an exponentially
decaying RT distribution. Comparison of these simulated RT
distribution functions to the actual measured data (Figure 3)
clearly demonstrates that the integrator model provides a better
account of behavior than the nonintegrative model, and implies
that the human olfactory system integrates sensory information
over time in order to improve identification accuracy.

Decision Bounds Collapse over Time
An important follow-up question to the above analysis is how
choice accuracy on this task relates to predictions from the
DDM, andwhether it can be used to demonstrate that the system
benefits from increased sampling. Of note, if the decision-bound
criterion is fixed over time (though see next paragraph), then in an
open-response-time task, the accumulated information at the
time of decision will be perceived to be of the same quality—
upon reaching the decision bound—regardless of the time taken
to reach that decision. It therefore follows that in an open-sniff
task, accuracy for a given odor mixture will be the same for all
observedRTs. That being said, formore difficult mixtures, overall
accuracy may actually be lower, because the general quality of
stimulus information is weaker, and subjects will have a greater
probability of making the wrong choice. Plots of response accu-
racy conditional on number of sniffs (Figure 4A) demonstrate this
mean reduction in decision accuracy for the hardest mixtures.
Interestingly, with regard to whether or not decision bounds

are fixed, the fact that choice accuracy slightly declined for
longer trials (compare three-sniff to five-sniff trials in Figure 4A)
implies that subjects might be willing to accept a lower quality
of evidence with the passage of time. This observation would
be consistent with decision bounds that collapse over time,
and such mechanisms have been hypothesized to occur in the
visual system (Resulaj et al., 2009). Indeed a DDM simulation
model with collapsing bounds closely reproduced behavioral
accuracy on the open-sniff task from Experiment 2 (Figure 4B).
Given these findings, we performed a new analysis to test

whether the fixed-bounds (standard) or collapsing-bounds
DDM (cbDDM) provided a better fit to the behavioral data. A
mean cumulative distribution function (CDF) of the RTs from
the standard DDM was significantly different from the mean
CDF of behavioral RTs (p < 0.001; Kolmogorov-Smirnov test),
indicating that this model was a poor fit to the data (Figure 4C).
However, the mean CDF of the cbDDM did not differ significantly
from the mean CDF of behavioral RTs (p = 0.1) (Figure 4D),
demonstrating that a DDM with collapsing bounds more accu-
rately reflects the behavioral data than one with fixed bounds.
Importantly, in terms of model selection, the cbDDM provided
a statistically stronger fit than the standard DDM, even after
adjusting for the number of free parameters using the Bayesian
Information Criterion (BIC) (BIC: 7.61 ± 1.06; p = 0.005, t test;
p = 0.002, Wilcoxon sign-rank test). Model simulations also re-
vealed that the cbDDM provided a significantly better fit than
a stochastic model with collapsing bounds, when tested against
our data from 11 subjects (p = 0.0044, paired t test).

Temporal Evidence Integration Is Unique to OFC
With data across two experiments suggesting that humans
integrate perceptual evidence over time, we next sought to char-
acterize where this integration occurs in the brain. Although
information might be expected to accumulate linearly over
time, when the cbDDM is used to simulate the mean accumu-
lated signal for trials of different lengths, it is evident that the
time course of integration is nonlinear, increasing more rapidly
closer to the time of decision (Figure 5A). Therefore, the behav-
iorally derived parameters from the cbDDM (including drift
rate, diffusion coefficient, and collapse rate) were used, on
a subject-by-subject basis, to model the expected temporal
profile of information integration. These in turn were used to
generate subject-specific fMRI regressors of interest in an
event-related finite-impulse-response (FIR) model, enabling us
to characterize within-trial temporal changes in the fMRI time
series. Note that the absolute value of the integration profile
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(A) Group-averaged plots of performance accuracy demonstrate successful categorization of both odorants at each end of the odor mixture spectrum. Color

wheels along the abscissa reflect relative proportions of eugenol-to-citral in each mixture (100% eugenol on the left; 100% citral on the right). The mean

psychometric curve fit (blue line) was averaged across each subject’s individually fitted sigmoidal function. Red curve, ± SEM.

(B) Group-averaged chronometric data demonstrate faster response times (RTs) for easier odor mixtures. Mean curve fit averaged across each subject’s

individually fitted parabolic function.

(C) A histogram plot of the RT data, binned into 2 s intervals, corresponds well to the gamma-like RT distribution arising from an integrative DDM (blue line), as

opposed to the exponential RT distribution arising from a nonintegrative (stochastic) model (gray line).
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test), but not for the less difficult mixtures (c2 = 0.64, df = 2, p =
0.73). (For post hoc analyses and analyses of similar open-sniff
profiles, see Supplemental Experimental Procedures.) Together
these findings demonstrate performance gains with an
increasing number of sniffs, especially for difficult mixtures,
and are compatible with integrator models of perceptual deci-
sion-making in the human olfactory system.

Experiment 2: Integration Accounts for RT Distributions
in an Open-Sniff Task
Given that the above results accord with olfactory temporal inte-
gration, in Experiment 2 we set out to elucidate this mechanism
more extensively at the psychophysical and neuroimaging
levels. To this end, fMRI brain activity was measured from an
independent group of subjects (n = 11) participating in an olfac-
tory 2AFC task. Odor stimuli, task design, and instructions were
identical to the paradigm in Experiment 1, except that subjects
made as many sniffs as needed (‘‘open’’ sniffs) to decide which
odorant dominated the mixture. Binary choices and response
times (RTs) were both recorded. Critically, as opposed to Exper-
iment 1, this open-sniff paradigm enabled us to define RT distri-
bution functions that could be compared to those of integrative
and nonintegrative (stochastic) models of perceptual decision-
making (Figure 2) to provide support for either model.
We began by confirming that behavior in our olfactory task

was consistent with profiles observed in other established
perceptual decision-making paradigms (Gold and Shadlen,
2007). Psychometric data indicate that subjects successfully
categorized eugenol-dominant mixtures as ‘‘clove’’ and citral-
dominant mixtures as ‘‘lemon’’ (Figure 3A; for single-subject
data, see Figure S1A). Subjects also rated odor mixtures with
more citral as having a higher perceptual ratio of lemon relative
to clove (Figure S1B). Decision accuracy was higher for the
less difficult mixtures (at both ends of the mixture spectrum), ex-
hibiting a sigmoidal relationship (R = 0.99 ± 0.001, group mean ±
SEM; p < 0.0001) typical of 2AFC behavior (Luce, 1986; Ratcliff
and McKoon, 2008; Wickelgren, 1977). Chronometric data simi-
larly followed results in other sensory domains: subjects took
more time when trying to categorize more difficult mixtures,
and the RT profile across subjects showed a negative curvature
of the best-fit parabola (p < 0.001; Wilcoxon sign-rank test)
across the mixture continuum (Figure 3B; single-subject plots,
Figure S1C).
We next used the behavioral data from Experiment 2 to simu-

late the RT distributions that would arise from a system accumu-
lating information over time. Insofar as our findings accord with
choice performance in other perceptual 2AFC studies, we
modeled the psychophysical data (Figure 3) using a drift-diffu-
sion model (DDM), which distills RT and accuracy data into
two free parameters: the drift rate, which represents the mean
rate of evidence accumulation; and the diffusion coefficient,
which represents the variance around this accumulation. The
DDM has been widely used to model behavior in tasks that rely
on the temporal integration of information (Ditterich, 2006; Link
and Heath, 1975; Mazurek et al., 2003; Ratcliff and McKoon,
2008). This model yields a gamma-like distribution of RTs. In
parallel, a simulated RT distribution corresponding to a noninte-
grative (stochastic) model was also implemented by removing

Figure 2. Integrative and NonintegrativeModels of Decision-Making
Generate Different Predictions about RT Probability Distributions
(A) In an integrative decision process, successive samples of information, or

‘‘evidence,’’ are accumulated over time, and a choice is made when that

evidence crosses one of two decision bounds (X or Y, upper panel). This

schematic shows integration of evidence (purple lines) for 16 sample trials,

each terminating in a choice of X or Y (purple circles). Normal curves (gray

lines) represent the distribution of evidence levels after each of four samples

(simulated acrossmany trials), where the shaded areas of the curves represent

relative numbers of choicesmade at each sampling point for either X (blue) or Y

(red). This decision process can be transformed into RT distributions for

choices X (blue line) and Y (red line), which conform to gamma-distributed

probability density functions (lower panel).

(B) In a nonintegrative (stochastic) decision process, each sample of infor-

mation is independent of the previous samples, and a choice is made when

a single sample has sufficient evidence to cross a bound (upper panel). The

schematic also depicts 16 sample trials with four sampling points, but in this

instance, if evidence does not surpass a threshold level, the decision process

begins again at zero evidence for the next sample. The RT distributions arising

from this nonintegrative process (lower panel) conform to exponentially de-

caying probability density functions. Specific sample trials (solid purple lines)

in the upper panels of (A) and (B) depict differences in how evidence accrues

over time in the two models.
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Figure 10.2 Diffusion-to-bound model of the decision process. Momentary evidence
in favor of the“A”choice and against the“ B”choice is accumulated as a function
of time. The process terminates with an“A”or“ B”choice when the accumulated
evidence reaches the upper or lower bound, respectively, at +A or−B. The momentary
evidence is distributed as a unit-variance Gaussian whose mean, µ, is proportional to
motion strength. The decision variable on a single trial follows a random“ diffusion”
path, like the one shown. The average of many of these paths would appear as a ramp
with slope µ and variance proportional to time. Both decision time and the proportion
of“A”and“ B”choices are governed by A, B, and µ.

as in the psychometric function:

E [t] =
A

kC
tanh (kCA) (10.2)

When C=0, this equation is interpreted as a limit

lim
C→0

A

kC
tanh (kCA) = A2 (10.3)

We will derive these equations in a later section, but for now, it suffices to say
that they capture the data reasonably well. Indeed, this model explains the
choices and reaction times of monkey and human subjects on a variety of sim-
ple, two-choice discrimination tasks under different speed-accuracy pressures
[14, 24]. Before working through the derivations, let’s acquaint ourselves with
the fitted parameters in equations (10.1) and (10.2).

The simplest form of the diffusion model, as employed in this example, has
three parameters. First, there is the bound height, A, which mainly controls the
balance between speed and accuracy. We place these bounds equidistant from
the starting point because at the beginning of the trial, before any evidence has
arrived, the two alternatives are equally likely. We will restrict our analysis to
this simple condition. The value of±A represents the total amount of evidence

dx = Adt+ cdW, x(0) = 0

p(x, t) = N(At, c
√
t)
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was used to represent evidence toward either decision bound,
and only trials of three, four, and five sniffs were included to
ensure that sufficient numbers of trials across subjects were
available for estimating the imaging data.

This approach revealed significant bilateral activity in centro-
medial OFC (p < 0.05 small-volume corrected), near the ante-
rior-medial portion of area 13l, (following the nomenclature of
Ongür et al., 2003), and situated within the putative human olfac-
tory OFC (Gottfried and Zald, 2005) (Figure 5B). To characterize
the temporal profile of these activations as a function of trial
length, deconvolution techniques (Glover, 1999; Zelano et al.,
2009) were used to remove the low-pass effect of the fMRI
hemodynamic response function on the mean time series in
OFC. These plots show that activity increased at slower rates
for longer trials, peaked at the time of decision, and had lower
peaks for longer trials, suggestive of collapsing bounds (Figures
5C and 5D). Statistical analyses demonstrated a main effect of
time (sniff number) in OFC (right mOFC, p = 0.007; left mOFC,
p = 0.021; repeated-measures ANOVA) and a significant interac-
tion between condition and time in right mOFC (p = 0.032) and at
trend level in left mOFC (p = 0.081), demonstrating faster rates of
increase for shorter trials. Additionally, a leave-one-subject-out
cross-validation technique (Kriegeskorte et al., 2009) was used
to obtain unbiased estimates of peak voxel activity in left and
right OFC, and resulted in similar time series responses (Fig-
ure S2; Supplemental Experimental Procedures). These patterns
conform closely to the temporal profiles predicted from the
cbDDM model (cf. Figure 5A) and are consistent with olfactory
information accumulation in human OFC.

Of note, the only other significant activations (at p < 0.001
uncorrected) from this fMRI model were in anterior OFC, anterior
cingulate cortex (ACC), and cerebellum. In these instances, the
fMRI time series plots from these regions (Figure 6) bear little
resemblance to the integrating profiles in central OFC. Rather,

these data show that activity ramped up either at the same
time, independent of trial length (e.g., anterior OFC and cere-
bellum), or at the same rate for all RTs (e.g., ACC). Indeed, while
analyses of these time series demonstrate amain effect of time in
each region (all p < 0.003), none of these regions exhibited
a significant interaction of condition and time (all p > 0.26).
Thus, these areas are likely involved in other aspects of odor
information processing, whereas only the centromedial OFC
appears to encode the accumulation of information over time
in a manner consistent with model-derived integration profiles.

Ongoing Sensory Report in Posterior Piriform Cortex
In addition to theOFC, the piriform cortex has been implicated as
a higher-order olfactory area involved in odor-quality coding,
categorization, and discrimination in a variety of animal electro-
physiological (Barnes et al., 2008; Schoenbaum and Eichen-
baum, 1995; Tanabe et al., 1975) and human imaging (Gottfried
et al., 2006; Howard et al., 2009; Small et al., 2008; Zelano et al.,
2009) studies. Akin to the hierarchical electrophysiological
dissociations between area MT and area LIP during visual
perceptual decision-making, we hypothesized that posterior piri-
form cortex (pPC) generates an ongoing report of olfactory
signals, whereas OFC integrates these signals. In order to deter-
mine the role that pPC plays in olfactory decision-making, we
constructed anatomically defined regions of interest (ROIs) for
both regions and then extracted and deconvolved the time series
averaged across all voxels in each ROI for each subject.
In pPC the magnitude of activity peaked shortly after trial

onset, and remained relatively sustained up until the time of
decision (Figures 7A and 7B). Notably, trial duration had little
effect on the time to peak: three-sniff, four-sniff, and five-sniff
trials all reached their peaks by the second sniff. Analysis of
the time series showed a main effect of time (p < 0.001), but no
condition-by-time interaction (p = 0.592), demonstrating that

Figure 4. Longer Trial Length Is Associated with Collapsing Decision Bounds
(A) Behavioral accuracy conditional on sniff number is shown for four different mixture difficulty levels (100%: red; 87.5%: green; 75%: blue; 62.5%: purple), from

the open-sniff paradigm in Experiment 2. Data are averaged across subjects and across mixture difficulty (e.g., 87.5% lemon trials and 87.5% clove trials

represented as 87.5%).

(B) Model simulation of a collapsing-bounds DDM resembles the behavioral profiles in (A), demonstrating that, for the same mixture difficulty level, choice

accuracy declines with longer trials.

(C) Cumulative distribution functions (CDFs) of the behavioral RTs (blue) significantly differed from the CDF of modeled RTs (red) based on a fixed-bounds DDM

(p < 0.001; Kolmogorov-Smirnov test; two-sample). Mean, solid lines; ± SEM, dashed lines.

(D) In contrast, no significant difference was observed between the CDF of behavioral RTs and the CDF of modeled RTs from the collapsing-bounds DDM

(p > 0.05).
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was used to represent evidence toward either decision bound,
and only trials of three, four, and five sniffs were included to
ensure that sufficient numbers of trials across subjects were
available for estimating the imaging data.

This approach revealed significant bilateral activity in centro-
medial OFC (p < 0.05 small-volume corrected), near the ante-
rior-medial portion of area 13l, (following the nomenclature of
Ongür et al., 2003), and situated within the putative human olfac-
tory OFC (Gottfried and Zald, 2005) (Figure 5B). To characterize
the temporal profile of these activations as a function of trial
length, deconvolution techniques (Glover, 1999; Zelano et al.,
2009) were used to remove the low-pass effect of the fMRI
hemodynamic response function on the mean time series in
OFC. These plots show that activity increased at slower rates
for longer trials, peaked at the time of decision, and had lower
peaks for longer trials, suggestive of collapsing bounds (Figures
5C and 5D). Statistical analyses demonstrated a main effect of
time (sniff number) in OFC (right mOFC, p = 0.007; left mOFC,
p = 0.021; repeated-measures ANOVA) and a significant interac-
tion between condition and time in right mOFC (p = 0.032) and at
trend level in left mOFC (p = 0.081), demonstrating faster rates of
increase for shorter trials. Additionally, a leave-one-subject-out
cross-validation technique (Kriegeskorte et al., 2009) was used
to obtain unbiased estimates of peak voxel activity in left and
right OFC, and resulted in similar time series responses (Fig-
ure S2; Supplemental Experimental Procedures). These patterns
conform closely to the temporal profiles predicted from the
cbDDM model (cf. Figure 5A) and are consistent with olfactory
information accumulation in human OFC.

Of note, the only other significant activations (at p < 0.001
uncorrected) from this fMRI model were in anterior OFC, anterior
cingulate cortex (ACC), and cerebellum. In these instances, the
fMRI time series plots from these regions (Figure 6) bear little
resemblance to the integrating profiles in central OFC. Rather,

these data show that activity ramped up either at the same
time, independent of trial length (e.g., anterior OFC and cere-
bellum), or at the same rate for all RTs (e.g., ACC). Indeed, while
analyses of these time series demonstrate amain effect of time in
each region (all p < 0.003), none of these regions exhibited
a significant interaction of condition and time (all p > 0.26).
Thus, these areas are likely involved in other aspects of odor
information processing, whereas only the centromedial OFC
appears to encode the accumulation of information over time
in a manner consistent with model-derived integration profiles.

Ongoing Sensory Report in Posterior Piriform Cortex
In addition to theOFC, the piriform cortex has been implicated as
a higher-order olfactory area involved in odor-quality coding,
categorization, and discrimination in a variety of animal electro-
physiological (Barnes et al., 2008; Schoenbaum and Eichen-
baum, 1995; Tanabe et al., 1975) and human imaging (Gottfried
et al., 2006; Howard et al., 2009; Small et al., 2008; Zelano et al.,
2009) studies. Akin to the hierarchical electrophysiological
dissociations between area MT and area LIP during visual
perceptual decision-making, we hypothesized that posterior piri-
form cortex (pPC) generates an ongoing report of olfactory
signals, whereas OFC integrates these signals. In order to deter-
mine the role that pPC plays in olfactory decision-making, we
constructed anatomically defined regions of interest (ROIs) for
both regions and then extracted and deconvolved the time series
averaged across all voxels in each ROI for each subject.
In pPC the magnitude of activity peaked shortly after trial

onset, and remained relatively sustained up until the time of
decision (Figures 7A and 7B). Notably, trial duration had little
effect on the time to peak: three-sniff, four-sniff, and five-sniff
trials all reached their peaks by the second sniff. Analysis of
the time series showed a main effect of time (p < 0.001), but no
condition-by-time interaction (p = 0.592), demonstrating that

Figure 4. Longer Trial Length Is Associated with Collapsing Decision Bounds
(A) Behavioral accuracy conditional on sniff number is shown for four different mixture difficulty levels (100%: red; 87.5%: green; 75%: blue; 62.5%: purple), from

the open-sniff paradigm in Experiment 2. Data are averaged across subjects and across mixture difficulty (e.g., 87.5% lemon trials and 87.5% clove trials

represented as 87.5%).

(B) Model simulation of a collapsing-bounds DDM resembles the behavioral profiles in (A), demonstrating that, for the same mixture difficulty level, choice

accuracy declines with longer trials.

(C) Cumulative distribution functions (CDFs) of the behavioral RTs (blue) significantly differed from the CDF of modeled RTs (red) based on a fixed-bounds DDM
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the integrator function from the DDM, yielding an exponentially
decaying RT distribution. Comparison of these simulated RT
distribution functions to the actual measured data (Figure 3)
clearly demonstrates that the integrator model provides a better
account of behavior than the nonintegrative model, and implies
that the human olfactory system integrates sensory information
over time in order to improve identification accuracy.

Decision Bounds Collapse over Time
An important follow-up question to the above analysis is how
choice accuracy on this task relates to predictions from the
DDM, andwhether it can be used to demonstrate that the system
benefits from increased sampling. Of note, if the decision-bound
criterion is fixed over time (though see next paragraph), then in an
open-response-time task, the accumulated information at the
time of decision will be perceived to be of the same quality—
upon reaching the decision bound—regardless of the time taken
to reach that decision. It therefore follows that in an open-sniff
task, accuracy for a given odor mixture will be the same for all
observedRTs. That being said, formore difficult mixtures, overall
accuracy may actually be lower, because the general quality of
stimulus information is weaker, and subjects will have a greater
probability of making the wrong choice. Plots of response accu-
racy conditional on number of sniffs (Figure 4A) demonstrate this
mean reduction in decision accuracy for the hardest mixtures.
Interestingly, with regard to whether or not decision bounds

are fixed, the fact that choice accuracy slightly declined for
longer trials (compare three-sniff to five-sniff trials in Figure 4A)
implies that subjects might be willing to accept a lower quality
of evidence with the passage of time. This observation would
be consistent with decision bounds that collapse over time,
and such mechanisms have been hypothesized to occur in the
visual system (Resulaj et al., 2009). Indeed a DDM simulation
model with collapsing bounds closely reproduced behavioral
accuracy on the open-sniff task from Experiment 2 (Figure 4B).
Given these findings, we performed a new analysis to test

whether the fixed-bounds (standard) or collapsing-bounds
DDM (cbDDM) provided a better fit to the behavioral data. A
mean cumulative distribution function (CDF) of the RTs from
the standard DDM was significantly different from the mean
CDF of behavioral RTs (p < 0.001; Kolmogorov-Smirnov test),
indicating that this model was a poor fit to the data (Figure 4C).
However, the mean CDF of the cbDDM did not differ significantly
from the mean CDF of behavioral RTs (p = 0.1) (Figure 4D),
demonstrating that a DDM with collapsing bounds more accu-
rately reflects the behavioral data than one with fixed bounds.
Importantly, in terms of model selection, the cbDDM provided
a statistically stronger fit than the standard DDM, even after
adjusting for the number of free parameters using the Bayesian
Information Criterion (BIC) (BIC: 7.61 ± 1.06; p = 0.005, t test;
p = 0.002, Wilcoxon sign-rank test). Model simulations also re-
vealed that the cbDDM provided a significantly better fit than
a stochastic model with collapsing bounds, when tested against
our data from 11 subjects (p = 0.0044, paired t test).

Temporal Evidence Integration Is Unique to OFC
With data across two experiments suggesting that humans
integrate perceptual evidence over time, we next sought to char-
acterize where this integration occurs in the brain. Although
information might be expected to accumulate linearly over
time, when the cbDDM is used to simulate the mean accumu-
lated signal for trials of different lengths, it is evident that the
time course of integration is nonlinear, increasing more rapidly
closer to the time of decision (Figure 5A). Therefore, the behav-
iorally derived parameters from the cbDDM (including drift
rate, diffusion coefficient, and collapse rate) were used, on
a subject-by-subject basis, to model the expected temporal
profile of information integration. These in turn were used to
generate subject-specific fMRI regressors of interest in an
event-related finite-impulse-response (FIR) model, enabling us
to characterize within-trial temporal changes in the fMRI time
series. Note that the absolute value of the integration profile

Figure 3. Psychophysical Data from Experiment 2 Are Consistent with Drift-Diffusion Models of Integration
(A) Group-averaged plots of performance accuracy demonstrate successful categorization of both odorants at each end of the odor mixture spectrum. Color

wheels along the abscissa reflect relative proportions of eugenol-to-citral in each mixture (100% eugenol on the left; 100% citral on the right). The mean

psychometric curve fit (blue line) was averaged across each subject’s individually fitted sigmoidal function. Red curve, ± SEM.

(B) Group-averaged chronometric data demonstrate faster response times (RTs) for easier odor mixtures. Mean curve fit averaged across each subject’s

individually fitted parabolic function.

(C) A histogram plot of the RT data, binned into 2 s intervals, corresponds well to the gamma-like RT distribution arising from an integrative DDM (blue line), as

opposed to the exponential RT distribution arising from a nonintegrative (stochastic) model (gray line).

See also Figure S1.
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-

Figure 5. Odor Evidence Integration in
Medial OFC
(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-

Figure 5. Odor Evidence Integration in
Medial OFC
(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-

Figure 5. Odor Evidence Integration in
Medial OFC
(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-

Figure 5. Odor Evidence Integration in
Medial OFC
(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-

Figure 5. Odor Evidence Integration in
Medial OFC
(A) Idealized time series profiles of evidence inte-

gration (mean, solid lines; SEM, dashed lines)

for three-, four-, and five-sample (sniff) trials were

generated from behaviorally derived parameters

from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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within-trial activity did not change at different rates, by condition.
Thus, pPC appears to represent ongoing sensory information
rather than integrate it for the purpose of perceptual decision-
making. Activity from an anatomically defined ROI of anterior
piriform cortex was also extracted, though its time series profile
conformed neither to a representation of ongoing sensory infor-
mation nor to the integration of this information (Figure S3).
By comparison, and in line with the fMRI time series data

(Figure 5), condition-specific activity in OFC peaked only at the
time of decision (Figures 7C and 7D). These time-course profiles
also show that OFC activity gradually increased in magnitude up
to the time of decision. As predicted by the cbDDM, for trials in
which subjects took more time to make a decision, the response
in OFC generally increased with a shallower slope and com-
menced later in the trial. There was both a main effect of time
(p = 0.024) and a condition-by-time interaction (p = 0.027),
demonstrating faster rates of increase for shorter trials. Similar
OFC time series profiles were observed when the analysis was
restricted either tomixtures of the same difficulty level (Figure S4)
or to correct trials only (Figure S5), supporting the rationale
behind combining trials of different stimulus difficulty and further
confirming DDM predictions.

DISCUSSION

The current results suggest that humans integrate olfactory
perceptual evidence in order to enhance perceptual decision-
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(A) Idealized time series profiles of evidence inte-
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from each subject’s collapsing-bounds DDM.

(B) Regression of the fMRI time series data against

the integration profiles in (A) revealed significant

activation in medial OFC (p < 0.05, small-volume

corrected). Images overlaid on coronal (top) and

axial (bottom) sections of the mean T1-weighted

MRI scan (display threshold, p < 0.005).

(C and D) Group-averaged deconvolved fMRI time

series (pooled across all significant voxels, p <

0.005) from right (C) and left (D) OFC demonstrate

that orbitofrontal activity increases over time and

peaks at the time of decision. All activations are

normalized to odor onset. *p < 0.05; y, p < 0.01,

differences from baseline. Error bars: SEM.

See also Figures S2, S3, and S5 and Table S1.

making. These findings were supported
across two independent psychophysical
experiments. First, in a fixed-sniff para-
digm, choice accuracy improved when
subjects were given an opportunity to
make more sniffs, especially for difficult
odor mixtures (Figure 1C). This behavioral
profile accords with temporal integration.
Second, in an open-sniff paradigm, a
drift-diffusion model of integration ac-

counted for the resulting RT distributions significantly better
than did a nonintegrative (stochastic) model (Figure 3D). This
effect was particularly true when the simulation model incorpo-
rated decision bounds that collapsed over time (Figure 4).
The use of two complementary paradigms was necessary to

establish that information accumulates in the human olfactory
system. In the open-sniff paradigm, subjects only make a choice
once a decision bound is reached, effectively clamping perfor-
mance accuracy. This has the benefit of generating RT distribu-
tions that can be compared to model-derived RT distributions,
such as the DDM, to provide evidence for or against integration.
However, the open-sniff task is unable to demonstrate the type
of choice-accuracy profiles that would be in keeping with inte-
gration. On the other hand, in the fixed-sniff paradigm, subjects
make a response at a specified time, effectively disengaging
their choices from a decision criterion. This has the potential
benefit of eliciting behavioral accuracy profiles reflective of inte-
gration over time, although the resulting RT distributions (arising
from imposed trial lengths) cannot be used to model integrative
processingmechanisms. Together these two paradigms provide
converging evidence that the human olfactory system, like other
sensory systems, can integrate perceptual information.
Brain imaging data highlighted a corresponding fMRI sig-

nature of temporal integration in the OFC. Using a regionally
unbiased approach, we found that odor-evoked activity in both
right and left medial OFC conformed closely to integration
profiles as predicted from the DDM (Figure 5). Specifically,
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✤ Other activations
✤ Anterior Cingulate 

Coretex (ACC), 
Cerebellum

✤ Do not show 
significant 
interaction of 
condition and time

time series increased at slower rates for longer trials, peaked at
the time of decision, and had lower peaks for longer trials. Of
note, the anatomical locus of this response overlapped with
the putative olfactory projection site in human OFC (Gottfried
and Zald, 2005). Ramp-like activity patterns were also seen in
cerebellum, ACC, and anterior OFC (Figure 6). However, none
of these other regions exhibited a time-course profile in accor-
dance with integration. These findings suggest that the medial
OFC is selectively involved in the accumulation of olfactory
perceptual evidence.

By comparison, fMRI activity in pPC reached a plateau soon
after odor onset, and trial duration had negligible impact on the
activation slopes (Figure 7). The distinct temporal response
patterns in pPC andOFC suggest that olfactory system process-
ing can be conceptualized as a two-stage mechanism in which
odor evidence is represented in pPC and integrated in OFC. In
elucidating a neurobiological mechanism that explicitly links
sensory inputs with perceptual states and decision criteria, our
findings help fill an important empirical gap in the human imaging
literature on perceptual decision-making, and they bring models
of human perceptual decision-making closely in line with animal
single-unit recording studies. The functional dichotomy between
pPC and OFC mirrors the respective roles played by areas MT
and LIP in the encoding and integration of visual perceptual
evidence in monkeys (Britten et al., 1992; Shadlen and News-
ome, 2001), implying that common general mechanisms
subserve perceptual decision-making across different sensory
domains (Romo and Salinas, 2001).

Of course, there are important differences between our para-
digm and more classical paradigms such as the visual motion
discrimination task. Nevertheless, it is worth pointing out that
conceptually, the dot-motion task and our task align in an impor-

Figure 6. Time Series Profiles of Increasing
fMRI Activity in Other Brain Areas
Correlations between the integration model and

the FIR imaging data set identified several other

regions with fMRI activity that increased over time

(p < 0.001 uncorrected), including right anterior

OFC (A), anterior cingulate cortex (B), right lateral

cerebellum (C), and medial cerebellum (D). These

time series, averaged across subjects (mean ±

SEM, deconvolved) are not compatible with

temporal integration, as predicted by the DDM.

See also Table S1.

tant way: at any given point of time, the
central nervous systemprocesses a noisy
signal, whether this happens to be a snap-
shot of moving dots or a sniff of an odor
mixture. Ideally, both moving dot patterns
and odor quality information could be
identified perfectly without any integra-
tion to speak of. For example, seeing
a single pair of dots moving in the same
direction should perfectly disambiguate
the direction, yet intrinsic limitations
originating in nervous system processing

means that the brain has noisy access to this signal and therefore
lacks the precision to arrive at a perceptual decision from just
a brief glimpse (see, for example, Tassinari et al., 2006 and their
Figure 3). That the signal fidelity of information (evidence) in the
brain is not perfect is ultimately what gives rise to the need for
integration. That being said, it is true that odor stimuli in general
cannot be controlled nearly as precisely as can visual stimuli, nor
are the stimulus adaptation characteristics as well defined in the
olfactory system, thereby introducing less quantifiable stimulus
noise. As mentioned above, a distinct advantage of using odors
is that integration is relatively slow, which makes it ideal for visu-
alizing with fMRI techniques.
Given that the DDM makes no specific assumptions about

what is being integrated, it is important to ask what the mOFC
signal represents. In a 2AFC task, this noisy sensory information
gives rise to a probability that one or the other of the two percep-
tual categories dominates the stimulus. At each sampling step,
it is this probability that is integrated with past-accumulated
probabilities. Thus, in the framework of the DDM, signal accumu-
lation in mOFC can be interpreted as the temporal integration
of perceptual evidence toward a criterion bound, which when
reached results in a decision. Interestingly, our data suggest
that in OFC, these bounds collapse over time, underscoring
a mechanism by which subjects are willing to accept an increas-
ingly lower quality of sensory information to arrive at a decision.
The idea of adaptable decision bounds, especially for error-
prone trials, is supported by recent psychophysical data
showing that new bound settings in the postdecision period
may be used to either affirm or change a decision (Resulaj
et al., 2009). Of course, the tendency for decision bounds to
change will depend on task demands, with an emphasis on
accuracy favoring bound constancy, and an emphasis on speed
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✤ Hypothesis:
pPC generates 
momentary olfactory 
evidence, to be integrated 
by OFC

✤ fMRI signal somehow 
consistent.

favoring bound collapse. These results highlight an intrinsic
mechanism of speed-accuracy tradeoff, whereby the brain natu-
rally relaxes decision criteria to avoid the loss of time associated
with noisy evidence.
Investigations into the role that OFC plays in olfactory

decision-making have been previously carried out in rodents.
In a study by Kepecs and colleagues (Kepecs et al., 2008),
single-unit recordings from OFC were made in awake, behaving
rats engaged in a 2AFC discrimination task involving mixtures of
two pure odorants. On each trial, rats sampled an odormixture at
a central port, and then responded by moving to either a left or
right choice port, where it waited to receive a water reward
for a correct response. Interestingly, during this postchoice,
reward-anticipation period, orbitofrontal neurons fired more
strongly on incorrect (versus correct) trials, as if OFC could
gauge the quality of the decision even prior to receipt of reward,
and neural responses in OFC mirrored a behavioral measure of
decision confidence across mixture stimuli. These findings
suggest that rodent OFC may encode confidence, whereby
less confidence is associated with higher OFC activity. Indeed
our OFC activity could possibly be interpreted as a confidence
signal, insofar as increased evidence could theoretically be
paralleled by an increase in confidence, but our study was not
designed to address this specifically.
The idea that the signal in OFC reflects evidence integration

toward a probability bound partially rests on ruling out other
alternatives. For example, associative learning studies show
that in the period leading up to reward delivery, OFC activity
increases with reward magnitude, reward delay, and effort cost
to earn reward (Kennerley et al., 2009; Roesch and Olson,

Figure 7. Dissociable Representations of
Odor Content and Odor Evidence Integra-
tion in pPC and OFC
(A and B) An ROI analysis depicts the deconvolved

time series of fMRI activity in posterior piriform

cortex (pPC), aligned either to odor onset (A) or to

response choice (B). These profiles demonstrate

an early response take-off in pPC after odor onset

and an early time to peak, with activity levels that

remain sustained throughout the odor presenta-

tion period.

(C and D) In contrast, an ROI analysis of the

deconvolved time series from olfactory OFC, also

aligned to odor onset (C) or response time (D),

shows ramp-like responses that peak at the time

of decision, with shallower slopes for longer trials.

Data at each time point for each sniff-length

condition are averaged across subjects (mean ±

SEM). All activations are normalized to odor onset.

*p < 0.05; y, p < 0.01, differences from baseline.

See also Figure S2.

2003, 2004; Schoenbaum et al., 1998;
Schoenbaum and Eichenbaum, 1995;
Tremblay and Schultz, 1999). This
begs the question of whether a build-up
of reward-related expectancy signals
toward a decision could underlie our
findings. However, subjects in our study

were not rewarded for correct trials or given response feedback.
Therefore, in the absence of explicit access to value or outcome
information, the generation of a signal that encoded, and
integrated, expected value over time would likely have been
negligible.
Another alternative is that the within-trial increase in OFC

activity represents a motor readiness signal, or an impetus to
act, that increases over time as subjects converge on a decision.
These ‘‘myoeconomic’’ arguments (Maunsell, 2004; Roesch and
Olson, 2003, 2004) contend that the neuronal signatures of
reward value in areas such as LIP or premotor frontal cortex
more accurately represent motivational and motor preparatory
responses engaged as an effect of reward anticipation. Again,
because our subjects received no feedback or reward, there
would not have been an opportunity for reward-based induction
of motor readiness signals. Finally, whether the OFC signal
reflects attention or arousal effects seems unlikely, because
more difficult mixtures (more attentionally demanding) elicited
the same magnitude of OFC activity as less difficult mixtures
(see Supplemental Experimental Procedures).
The identification of olfactory evidence integration in OFC

broadly accords with findings from a wide range of studies
showing that integrative mechanisms are at the core of much
of OFC function, including multisensory integration, associative
(cue-outcome) learning, and experience-dependent perceptual
plasticity. It also fits soundly with its suggested role in integrating
information about unique outcomes in real time (Schoenbaum
and Esber, 2010; Takahashi et al., 2009), particularly when
experience alone is insufficient to formulate predictions about
future events. Our new findings highlight the capacity of OFC
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✤ Found temporal integration of olfactory evidence (though weak)

✤ Make use of slow poor human performance to their advantage

✤ Found OFC correlates with DDM-like integration profiles

✤ Identified region corresponds to putative olfactory projection site in human OFC

✤ Rodent single-unit recording study on OFC: 
OFC report decision confidence during postchoice period

✤ pPC - OFC similar to MT - LIP in visual perceptual evidence 
integration in monkeys.
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The End

✤ Questions?
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✤ Behavioral data

✤ Performance as function of 
coherence (~difficulty of task)

✤ Distribution of response times.

✤ Neuronal recordings:

✤ Middle Temporal Area (MT)

✤ ~ momentary evidence

✤ Lateral Intraparietal Area (LIP)

✤ ~ accumulated evidence

10.2 The Diffusion-to-Bound Framework 209

 -50 0 50

400

500

600

700

800

900

R
ea

ct
io

n 
tim

e 
(m

s)

 -50 0 50
0

0.5

1

   
  P

ro
po

rti
on

 
rig

ht
w

ar
d 

ch
oi

ce
s

Motion strength (% coh)

A B

Figure 10.1 Behavioral data from one monkey performing reaction time (RT) version

of the direction discrimination task. A. Psychometric function. The probability of a

rightward direction judgment is plotted as a function of motion strength. Positive co-

herence refers to rightward motion and negative coherence to leftward motion. B. Effect

of motion strength on RT. Mean RT for correct trials is plotted as a function of motion

strength as in A. Error bars are smaller than the symbols. The solid lines show a com-

bined diffusion model fit to the choice and RT data.

is related to the direction and strength of the motion stimulus, but in any one

moment, the evidence is a random number. Over time, these random momen-

tary evidence values are accumulated, giving rise to a random trajectory. The

decision process terminates when the trajectory encounters a bound at±A. The

particular bound that is crossed determines the choice, and the time taken to

reach that bound determines the decision time. The important idea is that a

single mechanism explains both which choice is made and how long it takes to

make it.

These predictions can be described by relatively simple analytical equations,

which give rise to the fits in figure 10.1. The psychometric function describes

the probability of choosing the positive direction as a function of the motion

strength, C:

P+ =
1

1 + e−2kCA
(10.1)

where k and A are fitted parameters. The direction of motion is indicated by the

sign of C. The probability of choosing the positive motion direction is P+. We

assume that the subjects are unbiased. Therefore, when C = 0, P+ = 1− P+ =
1
2 .

The chronometric function describes the reaction time as a sum of decision

and nondecision times. The decision time function shares the same parameters

parameters for TAFC tasks. We hope thereby to offer a unified
framework in which to pursue future modeling and quantitative
studies of decision-making behavior.

The article is organized as follows. In the second section (Back-
ground), we provide formal descriptions of the TAFC task, the
SPRT, and the DDM, specifying how key quantities such as error
rate (ER) and mean DT depend on the parameters characterizing
the DDM. We then review five other decision-making models. We
analyze the relationship of these to the DDM in the third section
(Relationships Among the Models), showing that all but one of
them is a variant of it, at least in a limiting sense. We thereby
clarify the relationships among several theories and their differing
predictions, facilitating further analysis and discussion. We illus-
trate this by fitting DDM parameters to empirical TAFC data and

using these as a reference for comparing models throughout the
remainder of the article.

We then address the question of optimality. In the fourth section
(Optimal Performance of Decision Networks), we show that the
parameters optimizing performance of the other decision-making
models are precisely those for which the models reduce to the
DDM. We review several criteria for optimality in the fifth section
(A Theory of Optimal Thresholds), demonstrating that each im-
plies a unique optimal threshold and speed–accuracy trade-off and
illustrating their dependence on task parameters. We further show
that the DDM implements the optimal decision-making procedure
for all the criteria and predict novel patterns that should emerge in
empirical data as signatures of optimal performance in each case.
In the sixth section (Biased Decisions), we consider biased deci-
sions and rewards, in which one alternative is more probable, or
the reward associated with it more valuable, than the other. We
thereby explain some published neurophysiological data and make
new quantitative predictions about behavioral strategies in these
cases.

We finally discuss extensions to the DDM that might provide
more complete accounts of decision-making behavior, arguing that
it offers an attractive framework for further theoretical analysis
and the design of empirical studies. Throughout, we restrict our
formal presentation to the most important equations, and where
possible, we provide intuitive explanations. Further mathematical
details are available in Appendix A.

Background

Behavioral and Neurophysiological Data from the TAFC

In a common version of the TAFC task, participants must
identify the direction of a coherently moving subset of dots em-
bedded in a random motion field (Britten, Shadlen, Newsome, &
Movshon, 1993). Critical parameters under experimenter control
include (a) stimulus fidelity or difficulty, which can be manipu-
lated by varying the fraction of coherently moving dots; (b)
whether participants are allowed to respond freely or responses are
cued or deadlined; and (c) the delay between response and the next
stimulus.

In addition to their use in the study of behavior, TAFC tasks are
also used widely in neurophysiological studies, in which direct
recordings are made from brain areas involved in task performance
(e.g., Shadlen & Newsome, 1996, 2001). Figure 1b shows a
representation of typical firing rates observed in the middle tem-
poral area (MT) of monkeys trained on the moving dots task (MT
is involved in motion processing). When a stimulus with coherent
leftward motion is presented, the firing rate of an MT neuron
selective for leftward motion typically exceeds that of one selec-
tive for rightward motion (Britten et al., 1993)—the grey curve in
the figure is more often above the black one. However, both firing
rates are noisy, hence decisions based on instantaneous activities
of MT neurons would be inaccurate, reflecting uncertainty inherent
in the stimulus and its neural representation.

Figure 1c shows activity patterns of neurons in area LIP (in-
volved in eye movement control): They clearly separate as time
increases. LIP neurons are believed to integrate the noisy MT
outputs over each trial, leading to more accurate decisions. Neural
integration mechanisms have been studied extensively in the con-
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Figure 1. a: Sample reaction time distribution in two-alternative forced-
choice task; based on data from a sample participant in Experiment 1
described in the section TAFC Experiment and Fit of DDM (trials in
condition D ! 1). b, c: Cartoon of typical peri-stimulus time histograms of
neuronal activity during the moving dots task. The figure does not show the
actual data, but it is a sketch based on data described by Britten, Shadlen,
Newsome, and Movshon (1993), Shadlen and Newsome (2001), and Schall
(2001). Horizontal axes show time from stimulus onset. Vertical axes
indicate firing rate. Representative firing rates are shown for stimulus with
coherent leftward motion. b: Firing rate of neurons in the middle temporal
area (MT): Gray line represents a typical neuron selective for leftward
motion, and black line for rightward motion. c: Firing rate of neurons in the
lateral intraparietal (LIP) area: Gray line represents a typical neuron
selective for leftward saccades, and black line for rightward saccades.
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parameters for TAFC tasks. We hope thereby to offer a unified
framework in which to pursue future modeling and quantitative
studies of decision-making behavior.

The article is organized as follows. In the second section (Back-
ground), we provide formal descriptions of the TAFC task, the
SPRT, and the DDM, specifying how key quantities such as error
rate (ER) and mean DT depend on the parameters characterizing
the DDM. We then review five other decision-making models. We
analyze the relationship of these to the DDM in the third section
(Relationships Among the Models), showing that all but one of
them is a variant of it, at least in a limiting sense. We thereby
clarify the relationships among several theories and their differing
predictions, facilitating further analysis and discussion. We illus-
trate this by fitting DDM parameters to empirical TAFC data and

using these as a reference for comparing models throughout the
remainder of the article.

We then address the question of optimality. In the fourth section
(Optimal Performance of Decision Networks), we show that the
parameters optimizing performance of the other decision-making
models are precisely those for which the models reduce to the
DDM. We review several criteria for optimality in the fifth section
(A Theory of Optimal Thresholds), demonstrating that each im-
plies a unique optimal threshold and speed–accuracy trade-off and
illustrating their dependence on task parameters. We further show
that the DDM implements the optimal decision-making procedure
for all the criteria and predict novel patterns that should emerge in
empirical data as signatures of optimal performance in each case.
In the sixth section (Biased Decisions), we consider biased deci-
sions and rewards, in which one alternative is more probable, or
the reward associated with it more valuable, than the other. We
thereby explain some published neurophysiological data and make
new quantitative predictions about behavioral strategies in these
cases.

We finally discuss extensions to the DDM that might provide
more complete accounts of decision-making behavior, arguing that
it offers an attractive framework for further theoretical analysis
and the design of empirical studies. Throughout, we restrict our
formal presentation to the most important equations, and where
possible, we provide intuitive explanations. Further mathematical
details are available in Appendix A.

Background

Behavioral and Neurophysiological Data from the TAFC

In a common version of the TAFC task, participants must
identify the direction of a coherently moving subset of dots em-
bedded in a random motion field (Britten, Shadlen, Newsome, &
Movshon, 1993). Critical parameters under experimenter control
include (a) stimulus fidelity or difficulty, which can be manipu-
lated by varying the fraction of coherently moving dots; (b)
whether participants are allowed to respond freely or responses are
cued or deadlined; and (c) the delay between response and the next
stimulus.

In addition to their use in the study of behavior, TAFC tasks are
also used widely in neurophysiological studies, in which direct
recordings are made from brain areas involved in task performance
(e.g., Shadlen & Newsome, 1996, 2001). Figure 1b shows a
representation of typical firing rates observed in the middle tem-
poral area (MT) of monkeys trained on the moving dots task (MT
is involved in motion processing). When a stimulus with coherent
leftward motion is presented, the firing rate of an MT neuron
selective for leftward motion typically exceeds that of one selec-
tive for rightward motion (Britten et al., 1993)—the grey curve in
the figure is more often above the black one. However, both firing
rates are noisy, hence decisions based on instantaneous activities
of MT neurons would be inaccurate, reflecting uncertainty inherent
in the stimulus and its neural representation.

Figure 1c shows activity patterns of neurons in area LIP (in-
volved in eye movement control): They clearly separate as time
increases. LIP neurons are believed to integrate the noisy MT
outputs over each trial, leading to more accurate decisions. Neural
integration mechanisms have been studied extensively in the con-
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Figure 1. a: Sample reaction time distribution in two-alternative forced-
choice task; based on data from a sample participant in Experiment 1
described in the section TAFC Experiment and Fit of DDM (trials in
condition D ! 1). b, c: Cartoon of typical peri-stimulus time histograms of
neuronal activity during the moving dots task. The figure does not show the
actual data, but it is a sketch based on data described by Britten, Shadlen,
Newsome, and Movshon (1993), Shadlen and Newsome (2001), and Schall
(2001). Horizontal axes show time from stimulus onset. Vertical axes
indicate firing rate. Representative firing rates are shown for stimulus with
coherent leftward motion. b: Firing rate of neurons in the middle temporal
area (MT): Gray line represents a typical neuron selective for leftward
motion, and black line for rightward motion. c: Firing rate of neurons in the
lateral intraparietal (LIP) area: Gray line represents a typical neuron
selective for leftward saccades, and black line for rightward saccades.
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parameters for TAFC tasks. We hope thereby to offer a unified
framework in which to pursue future modeling and quantitative
studies of decision-making behavior.

The article is organized as follows. In the second section (Back-
ground), we provide formal descriptions of the TAFC task, the
SPRT, and the DDM, specifying how key quantities such as error
rate (ER) and mean DT depend on the parameters characterizing
the DDM. We then review five other decision-making models. We
analyze the relationship of these to the DDM in the third section
(Relationships Among the Models), showing that all but one of
them is a variant of it, at least in a limiting sense. We thereby
clarify the relationships among several theories and their differing
predictions, facilitating further analysis and discussion. We illus-
trate this by fitting DDM parameters to empirical TAFC data and

using these as a reference for comparing models throughout the
remainder of the article.

We then address the question of optimality. In the fourth section
(Optimal Performance of Decision Networks), we show that the
parameters optimizing performance of the other decision-making
models are precisely those for which the models reduce to the
DDM. We review several criteria for optimality in the fifth section
(A Theory of Optimal Thresholds), demonstrating that each im-
plies a unique optimal threshold and speed–accuracy trade-off and
illustrating their dependence on task parameters. We further show
that the DDM implements the optimal decision-making procedure
for all the criteria and predict novel patterns that should emerge in
empirical data as signatures of optimal performance in each case.
In the sixth section (Biased Decisions), we consider biased deci-
sions and rewards, in which one alternative is more probable, or
the reward associated with it more valuable, than the other. We
thereby explain some published neurophysiological data and make
new quantitative predictions about behavioral strategies in these
cases.

We finally discuss extensions to the DDM that might provide
more complete accounts of decision-making behavior, arguing that
it offers an attractive framework for further theoretical analysis
and the design of empirical studies. Throughout, we restrict our
formal presentation to the most important equations, and where
possible, we provide intuitive explanations. Further mathematical
details are available in Appendix A.

Background

Behavioral and Neurophysiological Data from the TAFC

In a common version of the TAFC task, participants must
identify the direction of a coherently moving subset of dots em-
bedded in a random motion field (Britten, Shadlen, Newsome, &
Movshon, 1993). Critical parameters under experimenter control
include (a) stimulus fidelity or difficulty, which can be manipu-
lated by varying the fraction of coherently moving dots; (b)
whether participants are allowed to respond freely or responses are
cued or deadlined; and (c) the delay between response and the next
stimulus.

In addition to their use in the study of behavior, TAFC tasks are
also used widely in neurophysiological studies, in which direct
recordings are made from brain areas involved in task performance
(e.g., Shadlen & Newsome, 1996, 2001). Figure 1b shows a
representation of typical firing rates observed in the middle tem-
poral area (MT) of monkeys trained on the moving dots task (MT
is involved in motion processing). When a stimulus with coherent
leftward motion is presented, the firing rate of an MT neuron
selective for leftward motion typically exceeds that of one selec-
tive for rightward motion (Britten et al., 1993)—the grey curve in
the figure is more often above the black one. However, both firing
rates are noisy, hence decisions based on instantaneous activities
of MT neurons would be inaccurate, reflecting uncertainty inherent
in the stimulus and its neural representation.

Figure 1c shows activity patterns of neurons in area LIP (in-
volved in eye movement control): They clearly separate as time
increases. LIP neurons are believed to integrate the noisy MT
outputs over each trial, leading to more accurate decisions. Neural
integration mechanisms have been studied extensively in the con-
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Figure 1. a: Sample reaction time distribution in two-alternative forced-
choice task; based on data from a sample participant in Experiment 1
described in the section TAFC Experiment and Fit of DDM (trials in
condition D ! 1). b, c: Cartoon of typical peri-stimulus time histograms of
neuronal activity during the moving dots task. The figure does not show the
actual data, but it is a sketch based on data described by Britten, Shadlen,
Newsome, and Movshon (1993), Shadlen and Newsome (2001), and Schall
(2001). Horizontal axes show time from stimulus onset. Vertical axes
indicate firing rate. Representative firing rates are shown for stimulus with
coherent leftward motion. b: Firing rate of neurons in the middle temporal
area (MT): Gray line represents a typical neuron selective for leftward
motion, and black line for rightward motion. c: Firing rate of neurons in the
lateral intraparietal (LIP) area: Gray line represents a typical neuron
selective for leftward saccades, and black line for rightward saccades.
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Sequential Probability Ratio Test

18

✤ Assume two populations reporting evidence for two alternatives (left/right): 
I1 and I2 

✤ Let Y = I1 - I2.

✤ If “right” hypothesis is true: Y ~ p1(y), with mean μ1 > 0
✤ If “left”: Y ~ p2(y), with mean μ2 < 0

✤ Get iid samples from pi(y).

✤ Goal: Decide as soon as possible which hypothesis is true.

✤ Optimal solution: Likelihood-ratio test:

✤ Taking log, equivalent to random walk

Z2 <
p1(y1)p1(y2) . . . p1(yn)

p2(y1)p2(y2) . . . p2(yn)
< Z1

logZ2 < log
p1(y1)

p2(y1)
+ . . .+ log

p1(yn)

p2(yn)
< logZ1

⇒ In = In−1 + log
p1(yn)

p2(yn)
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Drift Decision Model

✤ Simple: 
Analytical formulas for the Error rate and Response time.

✤ Optimal model, as implements the Neyman-Pearson test.

✤ Extensions:
✤ Drift variability: 

A ~ N(mA, sA)
✤ Initial position variability:

x0 ~ U[-sx, sx]
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ER = Φ

�
−A

c

√
T

�
Fixed time Free-response

DT =
z

A
tanh

�
Az

c2

�
ER =

1

1 + e
2Az
c2

z: bound
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