Choice of objective for approximate policy evaluation

Arthur Guez

Tea talk

Should one compute the Temporal Difference fix point or minimize the Bellman Residual? The unified oblique projection view

Reminder: Exact Policy Evaluation

Value for policy π at state i :

$$
v_{\pi}(i)=\mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^{k} r\left(i_{k}\right) \mid i_{0}=i\right]
$$

Let $v_{\pi} \in \mathbb{R}^{N}, P$ is a matrix $N \times N$ containing transition prob (dynamics + policy). Then v_{π} is the unique fixed point of the Bellman operator:

$$
\begin{aligned}
& \mathcal{T} v:=r+\gamma P v \\
& v_{\pi}=\mathcal{T} v_{\pi} \Longrightarrow v_{\pi}=(I-\gamma P)^{-1} r
\end{aligned}
$$

Approximate Policy Evaluation

(Note: π fixed, dropping π subscripts)

Suppose N is very large (or infinite), parametrize v with low-dim vector w as:

$$
\hat{v}(i)=\sum_{j=1}^{m} w_{j} \phi_{j}(i)
$$

with $m \ll N$ and ϕ_{j} the feature vectors.
Denote by $\Phi=\left(\phi_{1} \ldots \phi_{m}\right)$ the $N \times m$ feature matrix, then:

$$
\hat{v}=\Phi w
$$

Approximate Policy Evaluation

Which \hat{v} should we compute to approximate v ?

- Ideal \hat{v} : minimize $\|\hat{v}-v\|$ according to some norm.

Approximate Policy Evaluation

Which \hat{v} should we compute to approximate v ?

- Ideal \hat{v} : minimize $\|\hat{v}-v\|$ according to some norm.
- Usual norm in DP/RL: ξ-weighted quadratic norm $\left(\|x\|_{\xi}=\sqrt{\sum \xi_{i} x_{i}^{2}}=\sqrt{x^{\prime} \Xi x}\right)$, where ξ is a distribution on the states.

Approximate Policy Evaluation

Which \hat{v} should we compute to approximate v ?

- Ideal \hat{v} : minimize $\|\hat{v}-v\|$ according to some norm.
- Usual norm in DP/RL: ξ-weighted quadratic norm $\left(\|x\|_{\xi}=\sqrt{\sum \xi_{i} x_{i}^{2}}=\sqrt{x^{\prime} \Xi x}\right)$, where ξ is a distribution on the states.

$$
\begin{aligned}
\hat{v}_{\text {best }} & =\Phi w_{\text {best }} \\
& =\underbrace{\Phi\left(\Phi^{\prime} \Xi \Phi\right)^{-1} \Phi^{\prime} \Xi}_{\Pi} v \\
& =\Pi(I-\gamma P)^{-1} r
\end{aligned}
$$

Can't compute directly! Direct Monte-Carlo estimates are possible but high-variance.

Approximate Policy Evaluation: TD

Tractable objective: TD(0) fixpoint

- Look for fixed point of $\Pi \mathcal{T}$ operator.
- Want $\hat{v}_{\text {TD }}=\Pi \mathcal{T} \hat{v}_{\text {TD }}$. Closed-form for weights (if inverse exists):

$$
\begin{equation*}
w_{\mathrm{TD}}=\left(\Phi^{\prime} \Xi L \Phi\right)^{-1} \Phi^{\prime} \Xi r \tag{1}
\end{equation*}
$$

Approximate Policy Evaluation: TD

Tractable objective: TD(0) fixpoint

- Look for fixed point of $\Pi \mathcal{T}$ operator.
- Want $\hat{v}_{\mathrm{TD}}=\Pi \mathcal{T} \hat{v}_{\mathrm{TD}}$. Closed-form for weights (if inverse exists):

$$
\begin{equation*}
w_{\mathrm{TD}}=\left(\Phi^{\prime} \Xi L \Phi\right)^{-1} \Phi^{\prime} \Xi r \tag{1}
\end{equation*}
$$

- By far the most popular objective, both for incremental (online) methods (TD (0), gradient TDs) and batch (LSTD, LSPE, and some iterative methods).
- Example: Gradient TD methods minimize error $E_{\mathrm{TD}}(\hat{v})=\|\hat{v}-\Pi \mathcal{T} \hat{v}\|_{\xi}$

Approximate Policy Evaluation: BR

Tractable objective: minimize Bellman Residual

- Find \hat{v} that minimize $E_{\mathrm{BR}}(\hat{v})=\|\hat{v}-\mathcal{T} \hat{v}\|_{\xi}$
- Closed-form solution for the weights (always exists):

$$
\begin{equation*}
w_{\mathrm{BR}}=\left(\Psi^{\prime} \Xi \Psi\right)^{-1} \Psi^{\prime} \Xi r \tag{2}
\end{equation*}
$$

with $\Psi=L \Phi$.

Picture and examples

Result

Quality of TD fixpoint and BR solutions on the small example:

y axis $=\frac{e\left(w_{T D}\right)}{e\left(w_{\text {best }}\right)}$ and $\frac{e\left(w_{B R}\right)}{e\left(w_{\text {best }}\right)}$

Theoretical guarantees

- TD: Yes but only for on-policy sampling $\left(\xi=p_{\pi}\right)$. (Tsitsiklis \& Van Roy, 1996)
The fixpoint might exist nonetheless and most methods will converge to it. (see (Kolter 2011) for quality of solution in that case)
- BR: Yes in all cases (can bound the error relative to BR). (See (Williams \& Baird, 1993) and (Munos, 2003))

BR not really popular for these reasons:

- Sample-based BR slower to converge (plus might require double-sampling).
- TD finds $v_{\text {best }}$ but not BR in some cases.

Oblique projection view

TD and BR are both oblique projections onto span (Φ) and orthogonal to subspace spanned by $X_{T D}=\Xi \Phi$ or $X_{B R}=\Xi L \Phi$.

Can prove bound for any oblique projection. Not predictive of empirical performance according to results.

Empirical result

Randomly generated Φ and P for different N and m. More situations where TD is better:

$$
\gamma=0.9 \quad \text { E[TD winss } 0 .
$$

$$
\gamma=0.95
$$

$$
\text { E[TD wins.5 }{ }_{0.5}
$$

$$
\gamma=0.99
$$

$$
\mathrm{E}_{\mathrm{ElD} \text { wins. }}^{0.5}
$$

$$
\gamma=0.999
$$

$$
\text { E[TD wins] } 0.5
$$

Figure 2. TD win ratio.

Empirical result

but TD fails badly with the instabilities:

$$
\gamma=0.9
$$

Efro.erterer] —

$$
\gamma=0.9 \quad \text { E[BRA.erterer] }-
$$

$$
\gamma=0.95
$$

E[TD.enterer] -

$$
\gamma=0.95
$$

E[BR.enterer] —

$$
\gamma=0.99
$$

ETroentern -

$$
\gamma=0.99
$$

$\gamma=0.999$

$$
\gamma=0.999
$$

Conclusion

- $\mathrm{TD}(0)$ objective can be unstable, has advantages in practice.
- What if ξ and p_{π} are not too different? Or if $\operatorname{TD}(\lambda)$ is used?
- In the end, mostly after the results of approximate policy iteration, with a lot more instabilities to deal with (e.g. policy oscillations).

