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Abstract

We investigate projection methods, for eval-
uating a linear approximation of the value
function of a policy in a Markov Decision
Process context. We consider two popular
approaches, the one-step Temporal Differ-
ence fix-point computation (TD(0)) and the
Bellman Residual (BR) minimization. We
describe examples, where each method out-
performs the other. We highlight a sim-
ple relation between the objective function
they minimize, and show that while BR en-
joys a performance guarantee, TD(0) does
not in general. We then propose a unified
view in terms of oblique projections of the
Bellman equation, which substantially sim-
plifies and extends the characterization of
Schoknecht (2002) and the recent analysis of
Yu & Bertsekas (2008). Eventually, we de-
scribe some simulations that suggest that if
the TD(0) solution is usually slightly better
than the BR solution, its inherent numerical
instability makes it very bad in some cases,
and thus worse on average.

Introduction

We consider linear approximations of the value func-
tion of the policy in the framework of Markov Deci-
sion Processes (MDP). We focus on two popular meth-
ods: the computation of the projected Tempo-
ral Difference fixed point (TD(0), TD for short),
which Antos et al. (2008); Farahmand et al. (2008);
Sutton et al. (2009) have recently presented as the
minimization of the mean-square projected Bellman
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Equation, and the minimization of the mean-
square Bellman Residual (BR). In this article, we
present some new analytical and empirical data, that
shed some light on both approaches. The paper is
organized as follows. Section 1 describes the MDP lin-
ear approximation framework and the two projection
methods. Section 2 presents small MDP examples,
where each method outperforms the other. Section
3 highlights a simple relation between the quantities
TD and BR optimize, and show that while BR enjoys a
performance guarantee, TD does not in general. Sec-
tion 4 contains the main contribution of this paper:
we describe a unified view in terms of oblique projec-
tions of the Bellman equation, which simplifies and
extends the characterization of Schoknecht (2002) and
the recent analysis of Yu & Bertsekas (2008). Eventu-
ally, Section 5 presents some simulations, that address
the following practical questions: which of the method
gives the best approximation? and how useful is our
analysis for selecting it a priori?

1. Framework and Notations

The model We consider an MDP with a fixed pol-
icy, that is an uncontrolled discrete-time dynamic sys-
tem with instantaneous rewards. We assume that
there is a state space X of finite size N . When at
state i ∈ {1, .., N}, there is a transition probability
pij of getting to the next state j. Let ik the state of
the system at time k. At each time step, the system is
given a reward γkr(ik) where r is the instantaneous re-
ward function, and 0 < γ < 1 is a discount factor.
The value at state i is defined as the total expected re-

turn: v(i) := limN→∞ E
[∑N−1

k=0 γkr(ik)
∣∣∣ i0 = i

]
. We

write P the N × N stochastic matrix whose elements
are pij . v can be seen as a vector of RN . v is known
to be the unique fixed point of the Bellman operator:
T v := r + γPv, that is v solves the Bellman Equation
v = T v and is equal to L−1r where L = I − γP .



Reminder: Exact Policy Evaluation

Value for policy π at state i:

vπ(i) = E[

∞∑

k=0

γkr(ik)|i0 = i]

Let vπ ∈ RN, P is a matrix N×N containing transition prob (dynamics
+ policy). Then vπ is the unique fixed point of the Bellman operator:

T v := r + γPv

vπ = T vπ =⇒ vπ = (I − γP)−1r



Approximate Policy Evaluation

(Note: π fixed, dropping π subscripts)

Suppose N is very large (or infinite), parametrize v with low-dim
vector w as:

v̂(i) =

m∑

j=1

wjφj(i)

with m << N and φj the feature vectors.
Denote by Φ = (φ1 . . . φm) the N ×m feature matrix, then:

v̂ = Φw



Approximate Policy Evaluation

Which v̂ should we compute to approximate v?
I Ideal v̂: minimize ‖v̂− v‖ according to some norm.

I Usual norm in DP/RL: ξ-weighted quadratic norm

(‖x‖ξ =
√∑

ξix2
i =
√

x′Ξx), where ξ is a distribution on the
states.

I

v̂best = Φwbest

= Φ(Φ′ΞΦ)−1Φ′Ξ︸ ︷︷ ︸
Π

v

= Π(I − γP)−1r

Can’t compute directly! Direct Monte-Carlo estimates are
possible but high-variance.
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Approximate Policy Evaluation: TD

Tractable objective: TD(0) fixpoint

I Look for fixed point of ΠT operator.
I Want v̂TD = ΠT v̂TD. Closed-form for weights (if inverse exists):

wTD = (Φ′ΞLΦ)−1Φ′Ξr (1)

I By far the most popular objective, both for incremental (online)
methods (TD(0), gradient TDs) and batch (LSTD, LSPE, and
some iterative methods).

I Example: Gradient TD methods minimize error
ETD(v̂) = ‖v̂−ΠT v̂‖ξ
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Approximate Policy Evaluation: BR

Tractable objective: minimize Bellman Residual
I Find v̂ that minimize EBR(v̂) = ‖v̂− T v̂‖ξ
I Closed-form solution for the weights (always exists):

wBR = (Ψ′ΞΨ)−1Ψ′Ξr, (2)

with Ψ = LΦ.



Picture and examples



Result
Quality of TD fixpoint and BR solutions on the small example:

TD or BR? The unified oblique projection view
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Figure 1. Error ratio (in log scale) between the TD/BR
projection methods and the best approximation for Exam-
ple 1, with respect to the discount factor γ and the param-
eter θ of the reward (Left). It turns out that these surfaces
do not depend on θ so we also draw the graph with respect
to γ only (Right).

so that this diverging result was true even though
the exact value function v(0) = v(1) = 0 did be-
long to the feature space. In the case r1 = r2 = 0,
the TD and BR methods do calculate the exact so-
lution (we will see later that this is indeed a general
fact when the exact value function belongs to the fea-
ture space). We thus extend this model by taking
(r1, r2) != (0, 0). As a scaling of the reward is trans-
lated exactly in the approximation, we consider the
general form (r1, r2) = (cos θ, sin θ).

Consider the TD solution: one has Φ′Ξ =
(

1
2 1

)
,

(I − γP )Φ = (1 − 2γ 1 − γ), thus (Φ′ΞΨ) = 5
2 − 3γ

and Φ′Ξr = r1

2 + r2. Eventually the weight of the

TD approximation is wTD = r1+2r2

5−6γ . One notices

here that the value γ = 5/6 is singular. Now, con-
sider the BR solution. One can see that (Ψ′ΞΨ)−1 =
(1−2γ)2+(2−2γ)2

2 and Ψ′Ξr = (1−2γ)r1+(2−2γ)r2

2 . Thus,
the weight of the BR approximation is wBR =
(1−2γ)r1+(2−2γ)r2

(1−2γ)2+(2−2γ)2 .

For all these approximations, one can compute the
squared error e with respect to the optimal solution
v: For any weight w ∈ {wbest, wTD, wBR}, e(w) =
‖v − Φw‖2

ξ = 1
2 (v(1) − w)2 + 1

2 (v(2) − 2w)2. In Fig-

ure 1, we plot the squared error ratios e(wT D)
e(wbest)

and
e(wBR)
e(wbest)

on a log scale (they are by definition greater

than 1) with respect to θ and γ. It turns out that
these ratios do not depend on θ (instead of showing
this through painful arithmetic manipulations, we will
come back to this point and prove it later on). This
Figure also displays the graph with respect to γ only.
We can observe that for any choice of reward function
and discount factor, the BR method returns a bet-
ter value than the TD method. Also, when γ is in
the neighborhood of 5

6 , the TD error ratio tends to ∞
while BR’s stays bounded. This Example shows that
there exists MDPs where the BR is consistenly better

than the TD method, which can give an unbounded
error. One should however not conclude too quickly
that BR is always better than TD. The literature con-
tains several arguments in favor of TD, one of which
is considered in the following Example.

Example 2 Sutton et al. (2009) recently described a
3-state MDP example where the TD method computes
the best projection while BR does not. The idea be-
hind this 3-state example can be described in a quite
general way4: Suppose we have a k + l-state MDP,
of which the Bellman Equation has a block triangular
structure: v1 = γP1v1 + r1 / v2 = γP21v1 + P22v2 + r2

where v1 ∈ Rk and v2 ∈ Rl (the concatenation of
the vectors v1 and v2 form the value function). Sup-
pose also that the approximation subspace span (Φ)
is Rk × S2 where S2 is a subspace of Rl. For the first
component v1, the approximation space is the entire
space Rk. With TD, we obtain the exact value for
the k first components of the value, while with Bell-
man residual minimization, we do not: satisfying the
first equation exactly is traded for decreasing the error
in satisfying the second one (which also involves v1).
In an optimal control context, the example above can
have quite dramatic implications, as v1 can be related
to the costs at some future states accessible from those
states associated with v2, and the future costs are all
that matters when making decisions.

Overall, the two methods generate different types of
biases, and distribute error in different manners. In
order to gain some more insight, we now turn on to
some analytical facts about them.

3. A Relation and Stability Issues

Though several works have compared and considered
both methods (Schoknecht, 2002; Lagoudakis & Parr,
2003; Munos, 2003; Yu & Bertsekas, 2008), the follow-
ing simple fact has, to our knowledge, never been em-
phasized per se:

Proposition 1 The BR is an upper bound of the TD
error, and more precisely:

∀v̂ ∈ span (Φ) , EBR(v̂)2 = ETD(v̂)2 + ‖T v̂ − ΠT v̂‖2
ξ .

Proof This simply follows from Pythagore, as ΠT v̂ −
T v̂ is orthogonal to span (Φ) and v̂ − ΠT v̂ belongs to
span (Φ). !

This implies that if one can make the BR small, then
the TD Error will also be small. In the limit case where

4The rest of this section is strongly inspired by a per-
sonal communication with Yu.

y axis = e(wTD)
e(wbest)

and e(wBR)
e(wbest)



Theoretical guarantees

I TD: Yes but only for on-policy sampling (ξ = pπ). (Tsitsiklis & Van
Roy, 1996)
The fixpoint might exist nonetheless and most methods will
converge to it. (see (Kolter 2011) for quality of solution in that
case)

I BR: Yes in all cases (can bound the error relative to BR).
(See (Williams & Baird, 1993) and (Munos, 2003))



BR not really popular for these reasons:

I Sample-based BR slower to converge (plus might require
double-sampling).

I TD finds vbest but not BR in some cases.



Oblique projection view

TD and BR are both oblique projections onto span(Φ) and orthogonal
to subspace spanned by XTD = ΞΦ or XBR = ΞLΦ.

Can prove bound for any oblique projection. Not predictive of
empirical performance according to results.



Empirical result
Randomly generated Φ and P for different N and m. More situations
where TD is better:

TD or BR? The unified oblique projection view

2008), (1) our bound is tight in the sense that there
exists a worst choice for the reward for which it
holds with equality, and (2) it is always better than
that of Equation 3 from Bertsekas & Tsitsiklis (1996);
Tsitsiklis & Van Roy (1997). However, our work is
qualitatively different: by highlighting the oblique pro-
jection relation between v̂ and v, not only do we pro-
vide a clear geometric intuition for both methods, but
we also greatly simplify the form of the results and
their proofs (see (Yu & Bertsekas, 2008) for details).

Last but not least, there is globally a significant dif-
ference between our work and the two works we have
just mentionned. The analysis we propose is unified for
TD and BR (and even extends to potential new meth-
ods through other choices of the parameter X), while
the results in (Schoknecht, 2002) and (Yu & Bertsekas,
2008) are proved independently for each method. We
that hope our unified approach will help understand-
ing better the pros and cons of TD, BR, and related
alternative approaches.
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Figure 2. TD win ratio.

5. An Empirical Comparison

In order to further compare the TD and the BR projec-
tions, we have made some empirical comparison, which
we describe now. We consider spaces of dimensions
n = 2, 3, .., 30. For each n, we consider projections of
dimensions k = 1, 2, .., n. For each (n, k) couple, we
generate 20 random projections (through random ma-
trices10 Φ of size (n, k) and random weight vectors ξ)
and 20 random (uncontrolled) chain like MDP: from
each state i, there is a probability pi (chosen randomly
uniformly on (0, 1)) to get to state i + 1 and a proba-
bility 1 − pi to stay in i (the last state is absorbing);

10Each entry is a random uniform number between -1
and 1.
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Figure 3. Prediction of the best method through Prop. 3
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Figure 4. Expectation of eTD/eBR.

the reward is a random vector. For the 20 × 20 re-
sulting combinations, we compute the real value v, its
exact projection v̂best, the TD fix point v̂TD, and the
BR projection v̂BR. We then deduce the best error
e = ‖v − v̂best‖ξ, the TD error eTD = ‖v − v̂TD‖ξ

and the BR eBR = ‖v − v̂BR‖ξ. We also compute
the bounds of Proposition 3 for both methods: bTD

and bBR. Each such experiment is done for 4 different
values of the discount factor γ: 0.9, 0.95, 0.99, 0.999.

Using this raw data on 20 × 20 problems, we compute
for each (n, k) couple some statistics, which we de-
scribe now. All the graphs that we display shows the
dimension of the space N and of the projected space
m on the x − y axes. The z axis correspond to the
different statistics of interest.

Figure 2 shows the proportion of sampled problems
where TD method returns a better approximation
than BR (i.e. the expectation of the indicator func-
tion of eTD < eBR). It turns out that this ratio is



Empirical result
but TD fails badly with the instabilities:

eTD/e

TD or BR? The unified oblique projection view
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Figure 5. (Left) Expectation of eTD/e and (Right) of
eBR/e.

consistently greater than 1
2 , which means that the TD

method is usually better than the BR method. Figure
3 presents the ratio of time the bounds we have pre-
sented in Propostion 4 correctly guesses which method
is the best (i.e. the expectation of the indicator func-
tion of [eTD < eBR] = [bTD < bBR]). Unless the
feature space dimension is close to the state space di-
mension, the bounds do not appear very useful for
such a decision. Figure 4 displays the expectation of
eTD/eBR. One can observe that, on average, this ex-
pectation is bigger than 1, that is the BR tends to
be better, on average, than the TD error. This may
look contradictory with our interpretation of Figure
2, but the explanation is the following: when the BR
method is better than the TD method, it is by a larger
gap than when it is the other way round. We believe
this corresponds to the situation when the TD method
in unstable. Figure 5 allows to confirm this point: it
shows the expectation of the relative approximation
errors with respect to the best possible error, that is
the expectation of eTD/e and eBR/e. One observes on

all charts that this average relative quality of the TD
fix point has lots of pikes (corresponding to numerical
instabilities), while that of the BR method is smooth.

6. Conclusion and Future Work

We have presented the TD fix point and the BR mini-
mization methods for approximating the value of some
MDP fixed policy. We have described two original ex-
amples: in the former, the BR method is consistently
better than the TD method, while the latter (which
generalizes the spirit of the example of Sutton et al.
(2009)) is best treated by TD. Proposition 1 highlights
the close relation between the objective criteria that
correspond to both methods. It shows that minimiz-
ing the BR implies minimizing the TD error and some
extra “adequacy” term, which happens to be crucial
for numerical stability.

Our main contribution, stated in Proposition 2, pro-
vides a new viewpoint for comparing the two pro-
jection methods, and potential ideas for alternatives.
Both TD and BR can be characterized as solving a pro-
jected fixed point equation and this is to our knowledge
new for BR. Also, the solutions to both methods are
some oblique projection of the value v and this is to our
knowledge new for TD and BR. Eventually, this simple
geometric characterization allows to derive some tight
error bounds (Proposition 3). We have discussed the
close relations of our results with those of Schoknecht
(2002) and Yu & Bertsekas (2008), and argued that
our work simplifies and extends them. Though ap-
parently new to the Reinforcement Learning commu-
nity, the very idea of oblique projections of fixed point
equations has been studied in the Numerical Analysis
community (see e.g. Saad (2003)). In the future, we
plan to study more carefully this literature, and par-
ticularly investigate whether it may further contribute
to the MDP context.

Concerning the practical question of choosing among
the two methods TD and BR, the situation can be
summarized as follows: the BR method is sounder
than the TD method, since the former has a perfor-
mance guarantee while the latter will never have one
in general. Extensive simulations (on random chain-
like problems of size up to 30 states, and for many
projection of all the possible space sizes) further sug-
gest the following facts: (a) the TD solution is more
often better than the BR solution; (b) however some-
times, TD failed dramatically; (c) overall, this makes
BR better on average. Equivalently, one may say that
TD is more risky than BR.

Even if TD is more risky, there remains several reasons

eBR/e



Conclusion

I TD(0) objective can be unstable, has advantages in practice.
I What if ξ and pπ are not too different? Or if TD(λ) is used?
I In the end, mostly after the results of approximate policy

iteration, with a lot more instabilities to deal with (e.g. policy
oscillations).


