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Problem setup

A very basic topic model with k topics.
Probability of a topic

P(h = j) = wj , j ∈ [k],

where [k] := {1, . . . , k}, h is document topic.

Documents have length `, t ∈ [`].
If word t is the ith word, then

xt = ei

where ei is the unit vector in dimension i .
Vocabulary is of size d .
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Problem setup

Probabilty vector for topic j is µj ∈ ∆d−1.
Expected conditional probability of t th word in a document, given topic j :

E (xt |h = j) =
d∑

i=1

[µj ]iei = µj ,

M :=
[
µ1 . . . µk

]
.

Moments:

M2 = E [x1 ⊗ x2] =
k∑

i=1

wiµi ⊗ µi = Mdiag(w)M>

M3 = E [x1 ⊗ x2 ⊗ x3] =
k∑

i=1

wiµi ⊗ µi ⊗ µi

Question: can we learn wi , µi from empirical moments?
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Just a moment?

Do we need M3?
Recall:

M2 = Mdiag(w)M> =
?

M̃diag(w̃)M̃>

for some new M̃, w̃ .
Define

M̃ = MQ−1 w̃ = Qw .

What properties must Q ∈ <k×k satisfy?
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Just a moment?

1 Q should “look like” a matrix of conditional probabilities; i.e., each
column should sum to 1:

1>Q = 1>.

2 MQ−1 and Qw should have non-negative entries. So should M2,

M̃diag(w̃)M̃> = MQ−1diag(Qw)
(
Q−1)>M> =: M2

3 For the proof to work: Qdiag(w)Q> should have diagonal entries.
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Just a moment?

Proof:

Mdiag(w)M> = M̃diag(w̃)M̃>.

Substituting definitions for M̃ and w̃ , we get

M̃diag(w̃)M̃> = MQ−1diag(Qw)
(
Q−1)>M>

Need to show
Q−1 diag(Qw)

(
Q−1)> = diag(w)

under assumptions.
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Just a moment?

[diag(Qw)]ii =
∑
`

Qi`w`

=
(a)

∑
`

 k∑
j=1

Qj`


︸ ︷︷ ︸

=1

Qi`w`
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`
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(a)

∑
`

 k∑
j=1

Qj`


︸ ︷︷ ︸

=1

Qi`w`

=
∑

j

∑
`

Qj`w`Qi`

=
(
1>Qdiag(w)Q>

)
i

=
(
Qdiag(w)Q>

)
ii
,
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