Learning mixtures of spherical Gaussians: moment methods and spectral decompositions

Daniel Hsu and Sham Kakade

Arthur Gretton's notes

September 22, 2013

Problem setup

A very basic topic model with k topics.
Probability of a topic

$$
P(h=j)=w_{j}, \quad j \in[k],
$$

where $[k]:=\{1, \ldots, k\}, h$ is document topic.

Problem setup

A very basic topic model with k topics.
Probability of a topic

$$
P(h=j)=w_{j}, \quad j \in[k],
$$

where $[k]:=\{1, \ldots, k\}, h$ is document topic.
Documents have length $\ell, t \in[\ell]$.
If word t is the i th word, then

$$
x_{t}=e_{i}
$$

where e_{i} is the unit vector in dimension i.
Vocabulary is of size d.

Problem setup

Probabilty vector for topic j is $\mu_{j} \in \Delta^{d-1}$.
Expected conditional probability of t th word in a document, given topic j :

$$
\begin{aligned}
E\left(x_{t} \mid h=j\right) & =\sum_{i=1}^{d}\left[\mu_{j}\right]_{i} e_{i}=\mu_{j}, \\
M & :=\left[\begin{array}{lll}
\mu_{1} & \cdots & \mu_{k}
\end{array}\right] .
\end{aligned}
$$

Problem setup

Probabilty vector for topic j is $\mu_{j} \in \Delta^{d-1}$.
Expected conditional probability of t th word in a document, given topic j :

$$
\begin{aligned}
E\left(x_{t} \mid h=j\right) & =\sum_{i=1}^{d}\left[\mu_{j}\right]_{i} e_{i}=\mu_{j} \\
M & :=\left[\begin{array}{lll}
\mu_{1} & \cdots & \mu_{k}
\end{array}\right]
\end{aligned}
$$

Moments:

$$
\begin{aligned}
& M_{2}=E\left[x_{1} \otimes x_{2}\right]=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i}=\operatorname{Miag}(w) M^{\top} \\
& M_{3}=E\left[x_{1} \otimes x_{2} \otimes x_{3}\right]=\sum_{i=1}^{k} w_{i} \mu_{i} \otimes \mu_{i} \otimes \mu_{i}
\end{aligned}
$$

Question: can we learn w_{i}, μ_{i} from empirical moments?

Just a moment?

Do we need M_{3} ?
Recall:

$$
M_{2}=M \operatorname{diag}(w) M^{\top} \underset{?}{=} \tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}
$$

for some new \tilde{M}, \tilde{w}.
Define

$$
\tilde{M}=M Q^{-1} \quad \tilde{w}=Q w .
$$

What properties must $Q \in \Re^{k \times k}$ satisfy?

Just a moment?

(1) Q should "look like" a matrix of conditional probabilities; i.e., each column should sum to 1 :

$$
1^{\top} Q=1^{\top} .
$$

(2) $M Q^{-1}$ and $Q w$ should have non-negative entries. So should M_{2},

$$
\tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}=M Q^{-1} \operatorname{diag}(Q w)\left(Q^{-1}\right)^{\top} M^{\top}=: M_{2}
$$

(3) For the proof to work: $Q \operatorname{diag}(w) Q^{\top}$ should have diagonal entries.

Just a moment?

Proof:

$$
M \operatorname{diag}(w) M^{\top}=\tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}
$$

Substituting definitions for \tilde{M} and \tilde{w}, we get

$$
\tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}=M Q^{-1} \operatorname{diag}(Q w)\left(Q^{-1}\right)^{\top} M^{\top}
$$

Just a moment?

Proof:

$$
M \operatorname{diag}(w) M^{\top}=\tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}
$$

Substituting definitions for \tilde{M} and \tilde{w}, we get

$$
\tilde{M} \operatorname{diag}(\tilde{w}) \tilde{M}^{\top}=M Q^{-1} \operatorname{diag}(Q w)\left(Q^{-1}\right)^{\top} M^{\top}
$$

Need to show

$$
Q^{-1} \operatorname{diag}(Q w)\left(Q^{-1}\right)^{\top}=\operatorname{diag}(w)
$$

under assumptions.

Just a moment?

$$
\begin{aligned}
{[\operatorname{diag}(Q w)]_{i i} } & =\sum_{\ell} Q_{i \ell} w_{\ell} \\
& =\sum_{(\mathrm{a})} \sum_{\ell}^{\left(\sum_{j=1}^{k} Q_{j \ell}\right)} Q_{i \ell} w_{\ell}
\end{aligned}
$$

Just a moment?

$$
\begin{aligned}
{[\operatorname{diag}(Q w)]_{i i} } & =\sum_{\ell} Q_{i \ell} w_{\ell} \\
& =\sum_{\text {(a) }}^{\sum_{\ell}} \underbrace{\left(\sum_{j=1}^{k} Q_{j \ell}\right)}_{=1} Q_{i \ell} w_{\ell} \\
& =\sum_{j} \sum_{\ell} Q_{j \ell} w_{\ell} Q_{i \ell}
\end{aligned}
$$

Just a moment?

$$
\begin{aligned}
{[\operatorname{diag}(Q w)]_{i i} } & =\sum_{\ell} Q_{i \ell} w_{\ell} \\
& =\sum_{\text {(a) }} \sum_{\ell} \underbrace{\left(\sum_{j=1}^{k} Q_{j \ell}\right)}_{=1} Q_{i \ell} w_{\ell} \\
& =\sum_{j} \sum_{\ell} Q_{j \ell} w_{\ell} Q_{i \ell} \\
& =\left(1^{\top} Q \operatorname{diag}(w) Q^{\top}\right)_{i} \\
& =\left(Q \operatorname{diag}(w) Q^{\top}\right)_{i i},
\end{aligned}
$$

