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Overview

Support Vector Clustering
Asa Ben-Hur, David Horn, Hava T. Siegelmann, Vladimir Vapnik
Journal of Machine Learning Research, 2001.

m Main algorithm based on
Support vector domain description
David M.J Tax, Robert P.W Duin
Pattern Recognition Letters, 1999.

m Goal: Divide {z;}} , into disjoint groups.
m ldea:
Map z; to ¢(x;) (RKHS).
Find the minimal enclosing sphere in RKHS.

1
2
3 Sphere in RKHS = non-linear contours in the original space.
4 Interpret the contours as the cluster boundaries.
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m (a),..,(d): From high to low Gaussian widths.
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Support Vector Clustering (SVC)
Given {xj}jvzl find the smallest enclosing sphere of radius R. a € H (RKHS).

min R?

R,a
t N oal2 < R2
st [o(a) —ally < R
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Support Vector Clustering (SVC)
Given {xj}jvzl find the smallest enclosing sphere of radius R. a € H (RKHS).

min R?

R,a
t N oal2 < R2
st [o(a) —ally < R

Soft constraints with slack variables ¢;:

N
min R2+CD ¢
Rvav{fj }J 721 !

st [lp(zy) —allf, < R*+¢;.
£ > 0.

m Convex problem. One optimum.
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Solving SVC

With dual variables {§3;}; and {y;};, Lagragian is

N

N N
L=R+CY &~ (R +& —llo(z;) —all3) B Z

Jj=1 Jj=1 >0

|v<m
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Solving SVC

With dual variables {§3;}; and {y;};, Lagragian is

N N N
L=R*+CY & - (R*+& —llo(z;) —al},) A Zf
— — _ \/
=1 =1 >0 >0
Setting 2L = 0, 2L = (0, 2& — () leads to stationarity conditions
€ oR 9a — Y og;

1 1= ZjV:JL B;
2 a= Z;V:lﬂjqﬁ(a:j), linear combination of the mapped training points
3 8 =C—uy
KKT complementarity conditions (necessary for optimality)
1 (R +& — ||o(x;) —all3,) B =0
2 &pj =0
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Analysis of Support Vectors (§; > 0)

A: Constraints C: Stationarity conditions
L lp(x;) - allf, < R?+¢ 1 1=, 5
2 &, 85,15 =0 2 a=Y" Bp(z))
B: Complementarity conditions 3 Bj=C—yy
1 (R +¢& = llg(x;) —all,) B; =0
2 &ipj =0
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Analysis of Support Vectors (§; > 0)

A: Constraints C: Stationarity conditions
L lp(x;) - allf, < R?+¢ 1 1=, 5
2 &, 85,15 =0 2 a=Y" Bp(z))
B: Complementarity conditions 3 Bj=C—yy
1 (R +¢& = llg(x;) —all,) B; =0
2 &ipj =0

m Consider 0 < 3; <C. C3=p; >0. B2=¢;=0. Bl =
¢(x;) — al|3, = R%. ¢(z;) lies on the sphere surface. Call z; a “support
vector” (SV).
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A: Constraints C: Stationarity conditions
L lp(x;) - allf, < R?+¢ 1 1=, 5
2 &, 85,15 =0 2 a=Y" Bp(z))
B: Complementarity conditions 3 Bj=C—yy
1 (R +¢& = llg(x;) —all,) B; =0
2 &ipj =0

m Consider 0 < 3; <C. C3=p; >0. B2=¢;=0. Bl =

¢(x;) — al|3, = R%. ¢(z;) lies on the sphere surface. Call z; a “support
vector” (SV).

m Call z; with & > 0 a "bounded support vector” (BSV). & > 0 means ¢(x;)
lies outside the sphere by Al. B2 = u; =0. C3 = 3; =C.

m So, low C limits the influence of a BSV on the sphere.
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Dual Problem

m Substituting the stationarity conditions into L gives

N N N
max Zﬁj/{(l‘j,l‘j) — Z Zﬁzﬁjk(xﬂxj)

ik i3 i=1 j=1

N
s.t. Z’BJ =1,
)

0<p;<C

m 1 dropped. 3; = C' — p; replaced by 0 < 8; < C.
m {3;}; used to form a = Zjvzl Bjp(xj) (sphere center).
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Sphere Enclosure

m A point y is inside the sphere if

f(y) = llo(y) —ally < R,
where radius R := ||¢(z;) — a|lx and z; is a SV ie., 8; < C.

m f(y) is used for cluster assignment.

m Easy to compute f(y):

f(y)Jk(%y)?Z (5,y +ZZ@53 (@i, 25).

7j=1 =1 j=1

m Contour in data space:

{v [ ll¢(y) — alln = R}
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Cluster Assignment

0.5
m Given two points from different clusters,
any path that connects them must exit

from the sphere.

(b)
m Define an adjacency matrix A € {0, 1}V*V:
4 {1 if for all y on the line segment connecting x;, z;, f(y) < R
ij =

0 otherwise

m Clusters := connected components of the graph induced by A.
m Implemented by sampling a number of points.
m BSVs can be treated as outliers, or assigned to closest cluster.
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m k(z,y) = exp(—qllz - y[*)
m (a): ¢g=1. (b): ¢=20. (c): ¢ =24. (d): ¢ =48.
m Increasing ¢ (decreasing width): boundary fits more tightly
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Iris
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m Iris classification data. 3
classes. 4 dimensions.

m Project to first two
principal components.
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