What did we see yesterday?

Heishiro Kanagawa
Tea talk 21 Feb 2019

Symplectic Integrator

- A solver (numerical integrator) for Hamiltonian dynamical systems

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\frac{\partial H}{\partial q} \quad \frac{\mathrm{~d} q}{\mathrm{~d} t}=\frac{\partial H}{\partial p}
$$

- A variant of geometric numerical integrator
- Preserves the energy of the system

Solving differential equations

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=f(t, y(t))
$$

Euler method

$$
y_{n+1}=y_{n}+h f^{\prime}\left(t_{n}, y_{n}\right)
$$

- Requires numerical integration (discretisation)
- General methods:
\rightarrow Broad applicability
\rightarrow Don't care about the structure of the system
- Discretisation could break the structure e.g. Conservation Laws

Example (first order Euler)

With $q_{x}=2, q_{y}=1, p_{x}=0, p_{y}=0$ for $t=0$

Example (fourth order Runge-Kutta)

With $q_{x}=2, q_{y}=1, p_{x}=0, p_{y}=0$ for $t=0$

Hamiltonian Mechanics

- Differential equations described by $H(p, q)$

$$
\begin{array}{llll}
\frac{\mathrm{d} p}{\mathrm{~d} t} & =-\frac{\partial H}{\partial q} & \mathbf{r}(t)=(p(t), q(t)) & \frac{\mathrm{d} \mathbf{r}}{\mathrm{~d} t}
\end{array}=D_{H} \mathbf{r} .
$$

- Solution

$$
\mathbf{r}(\tau)=\exp \left(\tau D_{H}\right) \mathbf{r}(0)
$$

$\exp \left(\tau D_{H}\right)=$ operator taking the system from 0 to τ

Solving a Hamiltonian system

- Assume

$$
H(p, q)=\underbrace{T(p)}+\underbrace{V(q)}
$$

kinetic potential

- Then

$$
\exp \left(\tau D_{H}\right)=\exp \left(\tau\left(D_{T}+D_{V}\right)\right)
$$

- If $\exp \left(\tau\left(D_{T}+D_{V}\right)\right)=\exp \left(\tau D_{T}\right) \exp \left(\tau D_{V}\right)$
\rightarrow solve two set of equations (can do exactly)
(1)

$$
\frac{\mathrm{d} p}{\mathrm{~d} t}=-\frac{\partial V}{\partial q} \quad \& \quad \frac{\mathrm{~d} q}{\mathrm{~d} t}=0 \quad \frac{\mathrm{~d} p}{\mathrm{~d} t}=0 \quad \& \quad \frac{\mathrm{~d} q}{\mathrm{~d} t}=\frac{\partial V}{\partial p}
$$

Implicit Hamiltonian

But $\exp \left(\tau\left(D_{T}+D_{V}\right)\right) \neq \exp \left(\tau D_{T}\right) \exp \left(\tau D_{V}\right)$

How about I do anyway?

\rightarrow it actually makes sense (using Baker-CampbellHausdorff formula)

$$
\begin{gathered}
\exp \left(\tau D_{T}\right) \exp \left(\tau D_{V}\right)=\exp (\tau \tilde{H}) \\
\tilde{H}=T+V+\frac{\tau}{2}\{V, T\}+\frac{\tau^{2}}{12}(\{\{V, T\}, T\}+\{\{T, V\}, V\})+\cdots \\
=H+O(\tau)
\end{gathered}
$$

Using $\exp \left(\tau D_{T}\right) \exp \left(\tau D_{V}\right) \Longleftrightarrow$ Solving about \tilde{H} (we can do exactly)

Symplectic Integrator (SI)

First order Symplectic Integrator

- Update rule:

$$
\begin{aligned}
& p_{n+1}=p_{n}-\left.\tau \frac{\partial V}{\partial q}\right|_{q_{n}} \\
& q_{n+1}=q_{n}+\left.\tau \frac{\partial K}{\partial q}\right|_{p_{n+1}}
\end{aligned}
$$

- Energy error

$$
H=\tilde{H}+O(\tau)
$$

- Benefit $=$ long-term analysis with rough τ is okay

Example (first order symplectic)

With $q_{x}=2, q_{y}=1, p_{x}=0, p_{y}=0$ for $t=0$

Symplectic Integrator (SI)

Higher order Symplectic Integrator

- Example:
- Leap-frog method (2nd order)
\rightarrow People use for HMC
- Construction

$$
\exp \left(\tau\left(D_{T}+D_{V}\right)=\prod_{k=1}^{K} \exp \left(\tau c_{k} D_{T}\right) \exp \left(\tau d_{k} D_{V}\right)+O\left(\tau^{K+1)}\right.\right.
$$

\rightarrow Find c_{k}, d_{k}

Example (fourth order symplectic)

With $q_{x}=2, q_{y}=1, p_{x}=0, p_{y}=0$ for $t=0$

What did I talk about?

- Introduced a numerical integrator that preserves a structure of the system
\rightarrow There is a field studying this kind of methods (geometric numerical integration)
- Symplectic Integrator is a method for Hamiltonian systems

Reference:

1. Wikipedia page on Symplectic Integrator
2. Application to optimisation: On Symplectic Optimization
