Metrics for probabilistic geometries

A. Tossi, S. Hauberg, A. Vellido, N. D. Lawrence

UAI 2014

October 16, 2014

Outline

Background

- Dimensionality reduction (GPLVM)
- Riemannian Geometry

Motivation

- Euclidian metric has undesired properties in Low dim space Proposed work
- GPLVM + Riemannian Geometry

Background I : Dimensionality reduction

High dimensional data D live on a low dimensional manifold d

Embedding: $x \leftrightarrow y$

Background I : Dimensionality reduction

Toy example: The swiss roll

Motivation

Background I : Dimensionality reduction

Many existing methods

- PCA, Isomap, LLE, Autoencoders, MVU ...

Background I : Dimensionality reduction

Many existing methods

- PCA, Isomap, LLE, Autoencoders, MVU ...

Focus on a probabilistic one:

- Gaussian Process Latent Variable Model (GPLVM)

Background II: A bit of Riemannian Geometry

Background II: A bit of Riemannian Geometry

Curve

- $I:[0,1] \rightarrow \mathbb{R}^{2}$ (curve $=1 D$ object)
- $f \circ I:[0,1] \rightarrow \mathbb{R}^{3}$

Background II : A bit of Riemannian Geometry

Curve

- I : $[0,1] \rightarrow \mathbb{R}^{2}$ (curve $=1 D$ object)
- $f \circ I:[0,1] \rightarrow \mathbb{R}^{3}$

Length of curve?

Background II: A bit of Riemannian Geometry

Curve

- $I:[0,1] \rightarrow \mathbb{R}^{2}$ (curve $=1 D$ object)
- $f \circ I:[0,1] \rightarrow \mathbb{R}^{3}$

Length of curve?

$$
\begin{aligned}
\operatorname{Length}(f(I)) & =\int_{0}^{1}\left\|\frac{\partial f(I(t))}{\partial t}\right\| d t \\
& =\int_{0}^{1}\left\|J \frac{\partial I(t)}{\partial t}\right\| d t, \quad J=\left.\frac{\partial f}{\partial I}\right|_{I=I(t)}
\end{aligned}
$$

Background II: A bit of Riemannian Geometry

Definition

(Riemannian metric). A Riemannian metric tensor G on a manifold \mathcal{M} is symmetric and positive definite matrix which defines a smoothly varying inner product

For $x \in \mathcal{M}$, and $a, b \in T_{x} \mathcal{M}$ (tangent space at x)

$$
\langle a, b\rangle_{x}=a^{T} J^{T} J b=a^{T} G(x) b
$$

Background II: A bit of Riemannian Geometry

Definition

(Riemannian metric). A Riemannian metric tensor G on a manifold \mathcal{M} is symmetric and positive definite matrix which defines a smoothly varying inner product

For $x \in \mathcal{M}$, and $a, b \in T_{x} \mathcal{M}$ (tangent space at x)

$$
\langle a, b\rangle_{x}=a^{T} J^{T} J b=a^{T} G(x) b
$$

$$
\operatorname{Length}(f(I))=\int_{0}^{1} \sqrt{\left\langle I^{\prime}(t), I^{\prime}(t)\right\rangle_{I(t)}} d t
$$

Background II: A bit of Riemannian Geometry

Definition

(Geodesic curve). Given two points $x_{1}, x_{2} \in \mathcal{M}$, a geodesic curve is a length minimizing curve connecting the points

$$
\begin{gathered}
I_{g}=\underset{I}{\operatorname{argmin}} \text { Length }(I) \\
I(0)=x_{1}, I(1)=x_{2}
\end{gathered}
$$

Back to Dimensionality reduction

Embedding: $x \leftrightarrow y$

Motivation

GP Regression

GP Regression

$$
y \mid x=f(x), f \sim \mathcal{G} \mathcal{P}(K)
$$

GP Regression

$$
\begin{aligned}
& y \mid x=f(x), f \sim \mathcal{G} \mathcal{P}(K) \\
& y^{*} \mid x^{*}, X, Y \sim \mathcal{G} \mathcal{P}(\tilde{m}, \tilde{K})
\end{aligned}
$$

GP Regression

$$
\begin{aligned}
& y \mid x=f(x), f \sim \mathcal{G} \mathcal{P}(K) \\
& y^{*} \mid x^{*}, X, Y \sim \mathcal{G} \mathcal{P}(\tilde{m}, \tilde{K})
\end{aligned}
$$

GPLVM

What kind of embedding?

$$
\begin{aligned}
& \quad \text { Linear } \\
& y=A x
\end{aligned}
$$

GPLVM

What kind of embedding?

$$
\begin{aligned}
& \text { Non-linear } \\
& y=f(x)
\end{aligned}
$$

GPLVM

What kind of embedding?

Non-linear + noise
$y=f(x)+\epsilon$

GPLVM

What kind of embedding?

Non-linear + prior on f

$$
\begin{gathered}
f \sim \mathcal{G P}\left(0, \mathcal{K}_{0}\right) \\
y=f(x)
\end{gathered}
$$

GPLVM

What kind of embedding?

Non-linear + prior on $f+$ noise $y \mid x \sim \mathcal{G} \mathcal{P}(0, K(x, x))$

GPLVM

What kind of embedding?

Non-linear + noise + prior

$$
\begin{gathered}
x \sim \mathcal{N}(0, \mathbb{I}) \\
y \mid x \sim \mathcal{G P}(0, K(x, x))
\end{gathered}
$$

GPLVM

What kind of embedding?

Non-linear + noise + prior

$$
x \sim \mathcal{N}(0, \mathbb{I})
$$

$$
y_{j} \mid x \sim \mathcal{G} \mathcal{P}(0, K(x, x)) \text { (per feature) }
$$

GPLVM

Embedding (optimize over latent)

$$
\begin{aligned}
\hat{X} & =\underset{X}{\operatorname{argmax}} p(Y \mid X) p(X) \\
& =\underset{X}{\operatorname{argmax}} \int d f p(Y \mid f) p(f \mid X) p(X)
\end{aligned}
$$

GPLVM

Posterior on mapping function (uncertainty)

$$
p(f \mid \hat{X}, Y) \propto p(Y \mid \hat{X})
$$

GPLVM

What metric to use for \mathcal{M} ?

We have data Y and its representation \hat{X}, thus a posterior embedding

$$
f^{*} \mid \hat{X}, Y, x^{*}(\text { Gaussian })
$$

What metric to use for \mathcal{M} ?

We have data Y and its representation \hat{X}, thus a posterior embedding

$$
f^{*} \mid \hat{X}, Y, x^{*}(\text { Gaussian })
$$

Which induces a posterior on the gradient of f
$\nabla f^{*} \mid \hat{X}, Y, x^{*}$ (Gaussian)

What metric to use for \mathcal{M} ?

We have data Y and its representation \hat{X}, thus a posterior embedding

$$
f^{*} \mid \hat{X}, Y, x^{*}(\text { Gaussian })
$$

Which induces a posterior on the gradient of f

$$
\nabla f^{*} \mid \hat{X}, Y, x^{*}(\text { Gaussian })
$$

We can choose

$$
G(x)=E\left[J^{T} J\right] \text { (non-central Wishart), with } J_{i j}=\frac{d f_{i}}{d x_{j}}
$$

Some details

Posterior on gradient per feature

$$
p(J \mid X, Y)=\prod_{j=1}^{p} \mathcal{N}(\mu_{J}^{(j)}, \underbrace{\Sigma_{J}}_{\text {shared }})
$$

Some details

Posterior on gradient per feature

$$
p(J \mid X, Y)=\prod_{j=1}^{p} \mathcal{N}(\mu_{J}^{(j)}, \underbrace{\Sigma_{J}}_{\text {shared }})
$$

Metric Tensor

$$
G=J^{T} J=\mathcal{W}\left(p, \Sigma_{J}, \mathbb{E}\left[J^{T}\right] \mathbb{E}[J]\right)
$$

Some details

Posterior on gradient per feature

$$
p(J \mid X, Y)=\prod_{j=1}^{p} \mathcal{N}(\mu_{J}^{(j)}, \underbrace{\Sigma_{J}}_{\text {shared }})
$$

Metric Tensor

$$
G=J^{T} J=\mathcal{W}\left(p, \Sigma_{J}, \mathbb{E}\left[J^{T}\right] \mathbb{E}[J]\right)
$$

Expected Metric Tensor

$$
E[G]=E\left[J^{T} J\right]=\mathbb{E}\left[J^{T}\right] \mathbb{E}[J]+\underbrace{p \Sigma_{J}}_{\text {uncertainty }}
$$

Motivation

Experiments

- Rotating objects \rightarrow dimred \rightarrow interpolate [Reconstruction error]
- Motion capture \rightarrow (dynamic) dimred \rightarrow interpolate [Limb length preservation]

Experiments

- Rotating objects \rightarrow dimred \rightarrow interpolate [Reconstruction error]

Avg. Training error $=\frac{1}{N} \sum_{n=1}^{N}\left\|\mathbb{E}\left[f\left(x_{n}\right)\right]-y_{n}\right\|$

Experiments

- Motion capture \rightarrow (dynamic) dimred \rightarrow interpolate [Limb length preservation]

