A NEURAL CIRCUIT THAT CONTROLS PLASTICITY AND THE GAIN OF SENSORY RESPONSES IN MOUSE VISUAL CORTEX

Neil and Stryker, Neuron 2010 + Fu et al, Neuron 2014 + Kaneko and Stryker, eLife 2014

KANEKO AND STRYKER, 2014 000

RUNNING MODULATES NEURAL RESPONSES IN MOUSE V1

Gain modulation of orientation-selective responses

NEIL AND STRYKER, 2010 O FU ET AL, 2014 •0000 KANEKO AND STRYKER, 2014 000

VIP INTERNEURONS, HIGHLY ACTIVE DURING RUNNING

Used genetic markers to identify interneuron subpopulations, VIP was special

CORRELATION BETWEEN VIP NEURONS AND RUNNING SPEED

non-VIP neurons are mostly pyramidal

VIP, SOM AND PV INTERNEURONS HAVE DIFFERENTIATED RESPONSES DURING RUNNING

Pfeffer et al, 2013, disinhibitory loop: VIP→SOM→Pyr

NEIL AND STRYKER, 2010 O FU ET AL, 2014 00000 KANEKO AND STRYKER, 2014 000

VIP INTERNEURONS SUFFICIENT AND NECESSARY FOR GAIN MODULATION DURING RUNNING

ORIGIN(S) OF MODULATION

- Lee, Neill et al, unpublished
 - Midbrain nucleus activation triggers running. Subthreshold activation increases gain without running.
 - **Cholinergic** input to VIP from basal forebrain, necessary for gain modulation.

Polack, Friedman and Golshani, 2013

- During immobility, cholinergic input essential for maintaining depolarization/unimodal membrane potential.
- **②** During locomotion, **noradrenergic** input necessary for tonic depolarization.

NEIL A	ND STRYKER, 2	2010
0		

KANEKO AND STRYKER, 2014

RECOVERY FROM LONG-TERM MONOCULAR DEPRIVATION

Does the high-gain cortical state relate to learning and plasticity? (think: attention)

NEIL	AND	STRYKER,	2010
0			

KANEKO AND STRYKER, 2014

RECOVERY FROM LONG-TERM MONOCULAR DEPRIVATION

Does the high-gain cortical state relate to learning and plasticity? (think: attention)

Monocular deprivation leads to amblyopia. Can function be recovered? **Yes, mouse running on a ball in VR**. FU ET AL, 2014 00000 KANEKO AND STRYKER, 2014

Recovery from long-term monocular deprivation

Does the high-gain cortical state relate to learning and plasticity? (think: attention)

Monocular deprivation leads to amblyopia. Can function be recovered? **Yes, mouse running on a ball in VR**.

NEIL AND STRYKER, 2010 O FU ET AL, 2014 00000 KANEKO AND STRYKER, 2014

RECOVERY IS SPECIFIC TO EXPERIENCED STIMULUS CLASS

FU ET AL, 2014 00000 KANEKO AND STRYKER, 2014

CONCLUSIONS

- Cortical gain and cortical state are changed by locomotion **in the mouse** (Neil and Stryker, 2010).
- VIP→SOM→Pyr disinhibitory mechanism mediates these changes (Fu et al, 2014).
- Plasticity is enhanced by pairing visual stimulation with running (Kaneko and Stryker, 2014).