Hex, and Brouwer's fixed point theorem

Federico Mancinelli

11/04/14

Mancinelli, Federico (UCL)

Hex, and Brouwer's fixed point theorem

11/04/14 Tea talk 1 / 12

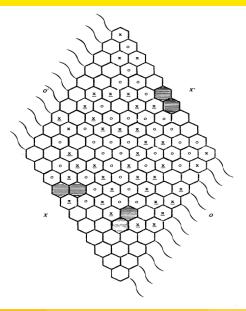
The game of Hex

What is Hex?

- Hex is a **strategy board game** played on a hexagonal grid, theoretically of any size and several possible shapes, but *traditionally* laid out as an 11x11 rhombus.
- It was invented in 1942 by Piet Hein, but was rediscovered by John Nash around 1947.

Hex, and Brouwer's fixed point theorem

The game of Hex



Mancinelli, Federico (UCL)

11/04/14 Tea talk 3 / 12

- - ≣ →

Brouwer's fixed point theorem

Why is it important?

- Brouwer's fixed-point theorem is probably the most widely used fixed-point theorem in topology, named after Luitzen Brouwer.
- It is the precursor of the Kakutani fixed point theorem, and was initially used by Nash for his first description of Nash equilibria.

Statement

- Any continuous function mapping a compact, convex set to itself has a fixed point. i.e. f : [0,1] → [0,1] has a fixed point f(x) = x.
- This is easy to see in one dimension. Not that obvious in more dimensions (and it indeed holds in *n* dimensions).

イロト 不得下 イヨト イヨト

So what's the link?

What's nice about these?

- The Hex theorem states that Hex can never end in a draw...
- Curiously, the Hex theorem **implies** Brouwer's fixed point theorem (and vice-versa) !
- This result had been discussed informally for many years but was formalised by David Gale in 1970 who also generalised to *n* dimensions (*n* dimensional Hex, *n* players).
- In fact, the Hex theorem and Brouwer's theorem are actually equivalent.

- (∃)

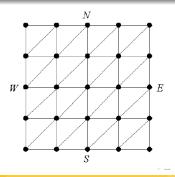
A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Proof that $\text{Hex} \rightarrow \text{FPT}$

Let's have a go at proving this. Hex \rightarrow FPT

The idea

The key idea is to find a graph representation of the board (below). The two dimensional Hex board of size k, call it B_k, is a graph whose vertices is the set of all z ∈ Z² with (1,1) ≤ z ≤ (k, k). Two vertices z and z₀ are adjacent (i.e., an edge in B_k connects z and z₀) if |z - z₀| = 1 and z and z₀ are comparable.



Mancinelli, Federico (UCL)

Hex, and Brouwer's fixed point theorem

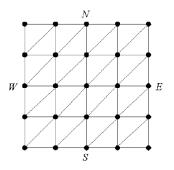
11/04/14 Tea talk 6 / 12

E SQA

Proof (1)

The Hex theorem now states..

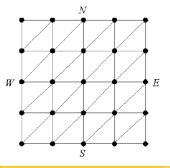
Let B_k be covered by two sets H and V. Then either H contains a connected set meeting E and W or V contains a connected set meeting N and S. We are going to prove that this is equivalent to saying that a function $f: I^2 \rightarrow I^2$ has a fixed point. Where I is the unit square.



Proof (2)

Basic observations

The set I^2 is compact, so it suffices to show that for any ϵ , there exists $x \in I^2$ for which $|f(x) - x| < \epsilon$. The compactness of I^2 also implies that f is uniformly continuous, so we know that for $\epsilon > 0$, there exists $\delta > 0$ such that if $|x - x'| < \delta$, then $|f(x) - f(x')| < \epsilon$. Also we can pick $\delta < \epsilon$. **Crucially**, we choose a Hex board large enough so that $\frac{1}{k} < \delta$.



Hex, and Brouwer's fixed point theorem

Proof (3)

Let's define...

•
$$H^+ = \{z | f_1(z/k) - z_1/k > \epsilon\}$$

•
$$H^- = \{ z | z_1 / k - f_1(z/k) > \epsilon \}$$

•
$$V^+ = \{z | f_2(z/k) - z_2/k > \epsilon\}$$

•
$$V^- = \{z | z_2/k - f_2(z/k) > \epsilon\}$$

Why?

- The goal is to show that these do not make it to cover the whole of B_k!
- Intuitively, H^+ is the set of all points which are shuffled by f, towards E, by more than ϵ . Same applies to other sets.

3

イロト イポト イヨト イヨト

Proof (4)

.

 H^+ and H^- (V^+ and V^-) are disjoint and not contiguous

• Take $z \in H^+$ and $z' \in H^-$ to be adjacent. Then by def.

 $f_1(z/k) - z_1/k > \epsilon$ $z'_1/k - f_1(z'/k) > \epsilon$

- Add them to obtain: $f_1(z/k) f_1(z'/k) z_1/k + z'_1/k > 2\epsilon$.
- Because z and z' are adjacent we know that

$$|z_1'/k-z_1/k\leq |z_1'/k-z_1/k|=1/k<\delta<\epsilon$$

• This implies, if we add it with point 2 in this slide, that $f_1(z/k) - f_1(z'/k) > \epsilon$ which is a contradiction since z and z' were adjacent.

Proof (5)

Finally...

- We have to prove that the sets $H = H^+ \cup H^-$ and $V = V^+ \cup V^-$ do not cover B_k completely. Here, we use the Hex theorem.
- Let Q be a connected set on H. Now, this must lie entirely on either H⁺ or H⁻. But H⁺ does not touch E, and H⁻ does not touch W (f is an automorphism). Similarly, a connected set on V cannot touch both W and E. The theorem is proved!

Discussion

- A nice example of how concepts that are seemingly quite different can turn out to be equivalent!
- There are some cases in which you can see mathematical facts through games. I.e. You can also prove that

$$\frac{1}{4} + \frac{1}{8} + \frac{2}{16} + \frac{3}{32} + \frac{5}{64} + \ldots = 1$$

via a solitaire game.

E Sac