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One of the easlest characteristics of a Metropolis algorithm to monitor is the frequency of
“acceptance” in the Metropolis step—which we label pjump. It has been claimed that, for a
wide variety of problems, optimal rules have acceptance probabilities near 0.5 (see, forexample,
Muller, 1993).
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The optimal efficiency, using cither measure, is just below 0.25. (The “comnr” &: e
maximum of the eff,;, line occurs when the second and third larpest eigenvaluesare equal.)
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Figure 1b plots the efficiency measure eff; as a function of acceptance rate; the Ieﬂ.mpst pointon
the curve cormesponds 1o ¢ — oo, and the rightmost point to & = 0. At lea.'sl for‘llus example,
the folklore seems comect; an acceptance rate near (but slightly below} 0.5 is optimal.
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If o is 100 low, the Metropolis steps are too short and move too slowly through the target
diswibutlon; if o is too high, the algorithm almost always rejects and stays in the same place.
The optimal ¢ is somewhere in between.

Interestingly, if one cannot be optimal, it seems better to use 100 high a value of o than o low;
o =5 is beter than o0 = 1.
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the jumping kernel scale [aclor ¢ = o4v/d, and with the acceptance rate p; i

I . anc Piump, tssuming F' = 1.
Here we see clearly that cfficiency is maximised by seuting ¢ = 2.38 2a) i
Piump = 0.234 (Figure 2b). ’ (Flgure 2a) ox by seaing
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The

simuiation study below demonstrates that the asymplotic optimality of accepting approximately
1/4 of proposed moves is approximately true for dimension as low as 6.



Tahle 1. Optinal scale factor od and optimal efficiencyfor normal jumping kermel and standard normal
target distribution in low dimensions, compared {0 theoretical values based on Theorem 3.1

Dimension,d Optimalos  effy  Prew 2.38/vd 0.331/d
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The results show that the asymptotically optimal g4 = 2.38/ +/d (irom Section 3.1) applies
for d as low as 1, and the asymptotic acceptance rats of 0.234 and efficiency of 0.331/v/d are
attained approximately by & = 6. Thus Theorem 3.1 accurately predicts the behavior of the
optimal spherically symmetric multivariate normal jumping kemel in low dimensions.

The theory and the simulation study both support the use of an over-dispersed proposal
distribution, as recommended by Besap and Green (1993} for one-dimensional sampling in
multivariate problems, However for higher dimensional problems, it is advisable to bave pro-
posals with smalles variances in rlation 1o those of the target density.
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Incidentally, the simulations
produced by an adaptive “Matkov ¢ in"* simulation are nol, in general, themselves a Markov
chain, because the transition probabilites can depend on the results of carlier itcrations (see,
for example, Gelfand and Sahu, 1993).
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Care has to be taken when adopling this approach, since adaptation 10 informauus
\suill previous iterations can compromise the stationarity of the target density. However, such
an approach is acceptable as part of a pilot saraple analysis, where adaptation stops after a fixed
nomber of exploratory itcrations.

Qur compatations provide some justification for such an adaptive approach. For higher
dimensional jumping rules, however, a lower acccplance rate ncar 0.25 is prefernble. Moreover,
Theorem 3.1 implies that an average acceplance rate of between 0.15 and 0.4 yields at lcast 30%
of the maximum eficiency obtaineble (sce Figure 2). In practice therefore, adaptation cannot
be recommended when acceptance rates are within this range. Even the folklore figure of 0.5
produces reasonable results {approximately 75% of maximum possible efficiency)
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Finally, we emphasize that an acceptance rate of around 0.25 docs not guaranies efficiency
of the algorithm. In particular, & different approach may be required to sample efficiently from
highly multimodal distributions, However, when an efficient scaling does exist, it is often
sufficient to only foosely tune the proposal distribution in order to abtain satisfactory results.






