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Motivation: Intractable densities

π(θ) =

∫
π(θ, z)Λ(dz)

where θ might be a parameter of interest and z are latent variables. As
usual, the target distribution π(θ) cannot be evaluated analytically but
the joint π(θ, z) can be.

Some examples:
1. Hidden Markov Models
2. Mixture Models
3. Diffusion processes observed at discrete times 1

4. Model selection

1Stramer and Bognar (2011)



What can we do?

1.

π(θ) =

∫
π(θ, z)dz

=

∫
π(θ, z)

qθ(z)
qθ(z)dz

= Eqθ(z)

[
π(θ, z)

qθ(z)

]
≈ 1

N

N∑
i=1

π(θ, zi )

qθ(zi )

i.e. we can rewrite it as an expectation w.r.t. some density qθ(z),
obtain a Montecarlo estimate of it and use it whenever we might
need to evaluate the density of interest.



What can we do? (More fancy stuff)

2. Numerical integration

/The approximation can be quite poor when the dimensionality of z
is high.

3. Data augmentation scheme and use MCMC
i.e. Compute full conditionals for sampling θ | z and z | θ
(either directly or using Metropolis within Gibbs, slice sampling
within Gibbs, etc.)

/This can result in strongly correlated samples (θi , zi )

4. Pseudomarginal scheme ,
Combines the computational efficiency of sampling directly from
π(θ) and implementation ease of introducing auxiliary variables.

Which one of this approaches leads to a valid sampler? i.e. has
π(θ) as invariant distribution



Some pseudocode

Figure: What is the difference between column 2 and 3?



Monte Carlo within Metropolis MCWM

I Z and Z∗ are refreshed at each iteration independently of previous
samples.

I {θi} is still a Markov chain with some transition kernel PMCWM .
I π(θ) is not the invariant distribution /



Grouped Independent Metropolis Hastings

I No fresh Z is sampled at each iteration but Z is recycled from the
previous iteration.

I {θi} is no longer a Markov chain, but (θi ,Zi ) is. ,

So GIMH can be seen as an approximation of a MH algorithm with target
π(θ) or as an MH algorithm with target ˜πN(θ,Z ) since the acceptance
ratio is



R Code: GIMH
pmmcmc<-function(N=100,alpha=0.5)
{

vec=vector("numeric", n)
x=0
oldlik=noisydnorm(x)
vec[1]=x
for (i in 2:n) {

innov=runif(1,-alpha,alpha)
can=x+innov
lik=noisydnorm(can)
aprob=lik/oldlik
u=runif(1)
if (u < aprob) {

x=can
oldlik=lik

}
vec[i]=x

}
vec

}
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R Code: MCWM

approxmcmc<-function(n=100,alpha=0.5)
{

vec = vector("numeric", n)
x = 0
vec[1] = x
for (i in 2:n) {

innov = runif(1,-alpha,alpha)
can = x+innov
lik = noisydnorm(can)
oldlik = noisydnorm(x)
aprob = lik/oldlik
u = runif(1)
if (u < aprob) {

x = can
}
vec[i] = x

}
vec

}



Time

ts
(m

cm
c.

ou
t)

0 4000 10000
−

3
−

1
1

3

Histogram of mcmc.out

mcmc.out

F
re

qu
en

cy

−3 −1 1 3

0
10

00
25

00

−4 0 2 4

−
3

−
1

1
3

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

0 40 80

0.
0

0.
4

0.
8

Lag

A
C

F

Series  mcmc.out



R code: Noisy likelihood estimates examples
noisydnorm<-function(z)
{

dnorm(z)*rexp(1,2)
}
noisydnorm<-function(z)
{

dnorm(z)*rexp(1,0.1+10*z*z)
}
noisydnorm<-function(z)
{

dnorm(z)*rgamma(1,0.1+10*z*z,0.1+10*z*z)
}
noisydnorm<-function(z)
{

dnorm(z)*rnorm(1,1)
}
noisydnorm<-function(z)
{

dnorm(z)*rnorm(1,0,0.1+10*z*z)
}



I Nice alternative for dealing with intractable densities.
I Could we modify it for non-linear functions of an intractable density?
I How about derivatives?
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