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Motivation: Intractable densities

m(0) = /W(Q,Z)A(dz)

where 6 might be a parameter of interest and z are latent variables. As
usual, the target distribution 7w(#) cannot be evaluated analytically but
the joint 7(6,2) can be.

Some examples:

1. Hidden Markov Models

2. Mixture Models

3. Diffusion processes observed at discrete times *
4. Model selection

1Stramer and Bognar (2011)



What can we do?
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i.e. we can rewrite it as an expectation w.r.t. some density go(z),
obtain a Montecarlo estimate of it and use it whenever we might
need to evaluate the density of interest.



What can we do? (More fancy stuff)

2. Numerical integration

®The approximation can be quite poor when the dimensionality of z
is high.

3. Data augmentation scheme and use MCMC
i.e. Compute full conditionals for sampling 6 | z and z | 6
(either directly or using Metropolis within Gibbs, slice sampling
within Gibbs, etc.)

®This can result in strongly correlated samples (6;, z;)

4. Pseudomarginal scheme ©®
Combines the computational efficiency of sampling directly from
m(#) and implementation ease of introducing auxiliary variables.

Which one of this approaches leads to a valid sampler? i.e. has
() as invariant distribution



Some pseudocode

TABLE 1
Comparison of the marginal, MCWM and GIMH algorithms

Step Marginal MCWM GIMH
0. Given: 0 and 7 (6) 6 and 7 (6) 0,Z and 7N (9)
1. Sample: 0* ~q(,-) 0*~q(,") 0% ~q(6,)
Z~g) (), N
Z* ~ g5 ()
{ Z:IN qé!" ) [
2. Compute: (%) [7~IN(9), #N o)
alV(6*)
3. Compute: r = 7(6*)q(6*,6) ﬁ'N(O‘)g(G‘,G) ,',N(gt) 6*.0)
o =(0)90.6%) 7N (6)q(0.6%) —q—ﬁ“’(e)q*(e,e*)
4.Withprob.l/\r: 9 =0* 9 =0* 19:0*,
H
otherwise: 9=60 5=0 57

Figure: What is the difference between column 2 and 37



Monte Carlo within Metropolis MCWM

» Z and Z* are refreshed at each iteration independently of previous
samples.

» {6} is still a Markov chain with some transition kernel PMCWM,

» 7(6) is not the invariant distribution ®



Grouped Independent Metropolis Hastings

» No fresh Z is sampled at each iteration but Z is recycled from the
previous iteration.

» {6;} is no longer a Markov chain, but (0;, Z;) is. ©

So GIMH can be seen as an approximation of a MH algorithm with target
7(6) or as an MH algorithm with target #V(6, Z) since the acceptance
ratio is

#N(6%)9(6%,6)
7N (0)q(0,6%)
/N 3 w(6%, 2 () T 1,1 96+ (2* 1)1g (6%, 0)g5 (2)
[1/N S w0, 20) T/ 11 90 20)1g 0, 6%)g (2%)




R Code: GIMH

pmmcme<-function(N=100,alpha=0.5)
{
vec=vector ("numeric", n)
x=0
oldlik=noisydnorm(x)
vec[1]=x
for (i in 2:n) {
innov=runif (1, -alpha,alpha)
can=x+innov
lik=noisydnorm(can)
aprob=1ik/o0ldlik
u=runif (1)
if (u < aprob) {
xX=can
oldlik=1ik
}
vec[i]l=x
}

vec
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R Code: MCWM

approxmcmc<-function(n=100,alpha=0.5)
{

vec =
x=0
vec[1] = x
for (i in 2:n) {

innov = runif(1,-alpha,alpha)

can = x+innov

lik = noisydnorm(can)

0ldlik = noisydnorm(x)

aprob = lik/oldlik

u = runif (1)

if (u < aprob) {

X = can
}

vec[i] = x

vector ("numeric", n)

3

vec
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R code: Noisy likelihood estimates examples

noisydnorm<-function(z)
{
dnorm(z) *rexp(1,2)
}
noisydnorm<-function(z)
{
dnorm(z) *rexp(1,0.1+10%z*z)
}
noisydnorm<-function(z)
{
dnorm(z) *rgamma (1,0.1+10*z*z,0.1+10%z*z)
}
noisydnorm<-function(z)
{
dnorm(z) *rnorm(1,1)
}
noisydnorm<-function(z)
{
dnorm(z) *rnorm(1,0,0.1+10*z*z)

}



> Nice alternative for dealing with intractable densities.
» Could we modify it for non-linear functions of an intractable density?
» How about derivatives?
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