The pseudomarginal approach [Based on Andrieu,C. and Roberts, G.O. (2009)] Tea Talk

Maria D. Lomeli-Garcia

Gatsby Computational Neuroscience Unit

August 16, 2013

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Table of Contents

Motivation: Intractable densities

What can we do?

Pseudocode

Monte Carlo within Metropolis

Grouped Independent Metropolis Hastings

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

R Code: GIMH

R Code: MCWM

Conclusion

Motivation: Intractable densities

$$\pi(\theta) = \int \pi(\theta, \mathbf{z}) \Lambda(\mathrm{d}\mathbf{z})$$

where θ might be a parameter of interest and **z** are latent variables. As usual, the target distribution $\pi(\theta)$ cannot be evaluated analytically but the joint $\pi(\theta, \mathbf{z})$ can be.

Some examples:

- 1. Hidden Markov Models
- 2. Mixture Models
- 3. Diffusion processes observed at discrete times ¹
- 4. Model selection

What can we do?

1.

$$\pi(\theta) = \int \pi(\theta, \mathbf{z}) d\mathbf{z}$$
$$= \int \frac{\pi(\theta, \mathbf{z})}{q_{\theta}(\mathbf{z})} q_{\theta}(\mathbf{z}) d\mathbf{z}$$
$$= E_{q_{\theta}(\mathbf{z})} \left[\frac{\pi(\theta, \mathbf{z})}{q_{\theta}(\mathbf{z})} \right]$$
$$\approx \frac{1}{N} \sum_{i=1}^{N} \frac{\pi(\theta, \mathbf{z}_{i})}{q_{\theta}(\mathbf{z}_{i})}$$

i.e. we can rewrite it as an expectation w.r.t. some density $q_{\theta}(\mathbf{z})$, obtain a Montecarlo estimate of it and use it whenever we might need to evaluate the density of interest.

What can we do? (More fancy stuff)

2. Numerical integration

 $\ensuremath{\textcircled{}^\circ}$ The approximation can be quite poor when the dimensionality of ${\bf z}$ is high.

Data augmentation scheme and use MCMC
 i.e. Compute full conditionals for sampling θ | z and z | θ
 (either directly or using Metropolis within Gibbs, slice sampling within Gibbs, etc.)

©This can result in strongly correlated samples (θ_i, z_i)

4. Pseudomarginal scheme ©

Combines the computational efficiency of sampling directly from $\pi(\theta)$ and implementation ease of introducing auxiliary variables.

Which one of this approaches leads to a valid sampler? i.e. has $\pi(\theta)$ as invariant distribution

Some pseudocode

Step	Marginal	MCWM	GIMH
0. Given:	θ and $\pi(\theta)$	θ and $\pi(\theta)$	$\theta, Z \text{ and } \tilde{\pi}^N(\theta)$
1. Sample:	$\theta^* \sim q(\theta, \cdot)$	$\theta^* \sim q(\theta, \cdot)$	$\theta^* \sim q(\theta, \cdot)$
		$\left\{egin{array}{l} Z\sim q^N_ heta(\cdot),\ Z^*\sim q^N_{ heta^*}(\cdot) \end{array} ight.$	$Z^* \sim q_{\theta^*}^N(\cdot)$
2. Compute:	$\pi(\theta^*)$	$\begin{cases} \tilde{\pi}^{N}(\theta), \\ \tilde{\pi}^{N}(\theta^{*}) \end{cases}$	$\tilde{\pi}^N(\theta^*)$
3. Compute: $r =$	$rac{\pi(heta^*)q(heta^*, heta)}{\pi(heta)q(heta, heta^*)}$	$rac{ ilde{\pi}^N(heta^*)q(heta^*, heta)}{ ilde{\pi}^N(heta)q(heta, heta^*)}$	$rac{ ilde{\pi}^N(heta^*)q(heta^*, heta)}{ ilde{\pi}^N(heta)q(heta, heta^*)}$
4. With prob. $1 \wedge r$:	$\vartheta = \theta^*$	$\vartheta = \theta^*$	$\begin{cases} \vartheta = \theta^*, \\ \mathfrak{Z} = Z^* \end{cases}$
otherwise:	$\vartheta = \theta$	$\vartheta = \theta$	$\begin{cases} \bar{\vartheta} = \theta, \\ \mathfrak{Z} = Z \end{cases}$

 TABLE 1

 Comparison of the marginal, MCWM and GIMH algorithms

Figure: What is the difference between column 2 and 3?

Monte Carlo within Metropolis MCWM

► Z and Z* are refreshed at each iteration independently of previous samples.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

- $\{\theta_i\}$ is still a Markov chain with some transition kernel P^{MCWM} .
- $\pi(\theta)$ is not the invariant distribution \odot

Grouped Independent Metropolis Hastings

- No fresh Z is sampled at each iteration but Z is recycled from the previous iteration.
- $\{\theta_i\}$ is no longer a Markov chain, but (θ_i, Z_i) is. \bigcirc

So GIMH can be seen as an approximation of a MH algorithm with target $\pi(\theta)$ or as an MH algorithm with target $\pi^N(\tilde{\theta}, Z)$ since the acceptance ratio is

$$\begin{aligned} \frac{\tilde{\pi}^{N}(\theta^{*})q(\theta^{*},\theta)}{\tilde{\pi}^{N}(\theta)q(\theta,\theta^{*})} \\ &= \frac{[1/N\sum_{k=1}^{N}\pi(\theta^{*},z^{*}(k))\prod_{l=1;l\neq k}^{N}q_{\theta^{*}}(z^{*}(l))]q(\theta^{*},\theta)q_{\theta}^{N}(Z)}{[1/N\sum_{k=1}^{N}\pi(\theta,z(k))\prod_{l=1;l\neq k}^{N}q_{\theta}(z(l))]q(\theta,\theta^{*})q_{\theta^{*}}^{N}(Z^{*})}, \end{aligned}$$

R Code: GIMH

```
pmmcmc<-function(N=100,alpha=0.5)</pre>
Ł
  vec=vector("numeric", n)
  x=0
  oldlik=noisydnorm(x)
  vec[1]=x
  for (i in 2:n) {
    innov=runif(1,-alpha,alpha)
    can=x+innov
    lik=noisydnorm(can)
    aprob=lik/oldlik
    u=runif(1)
    if (u < aprob) {
      x=can
      oldlik=lik
    }
    vec[i]=x
  }
  vec
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

R Code: MCWM

```
approxmcmc<-function(n=100,alpha=0.5)
ł
  vec = vector("numeric", n)
  \mathbf{x} = \mathbf{0}
  vec[1] = x
  for (i in 2:n) {
    innov = runif(1,-alpha,alpha)
    can = x+innov
    lik = noisydnorm(can)
    oldlik = noisydnorm(x)
    aprob = lik/oldlik
    u = runif(1)
    if (u < aprob) {</pre>
      x = can
    }
    vec[i] = x
  }
  vec
}
```

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

R code: Noisy likelihood estimates examples

```
noisydnorm<-function(z)</pre>
  dnorm(z) * rexp(1,2)
noisydnorm<-function(z)</pre>
Ł
  dnorm(z) * rexp(1, 0.1+10*z*z)
}
noisydnorm<-function(z)</pre>
Ł
  dnorm(z)*rgamma(1,0.1+10*z*z,0.1+10*z*z)
}
noisydnorm<-function(z)</pre>
Ł
  dnorm(z)*rnorm(1,1)
}
noisydnorm<-function(z)</pre>
Ł
  dnorm(z)*rnorm(1,0,0.1+10*z*z)
                                             (ロ) (型) (E) (E) (E) (O)
```

- Nice alternative for dealing with intractable densities.
- Could we modify it for non-linear functions of an intractable density?

(ロ)、

How about derivatives?