

Way To Normal

Fast Inverse Square Root magic trick

Loïc Matthey
Tea Talk n ${ }^{\circ} 11$

17th January 2013

Introduction

* How to compute $\frac{1}{\sqrt{x}}$ quickly and efficiently?
* Cool piece of code found in Quake III source code, attributed to John Carmack.
* Actually going back to SGI, 3dfx and first written in mid 1980s by Greg Walsh
* Needed to compute normals, used extensively in lighting and shading

The piece of code

```
float FastInvSqrt(float x) {
    long i;
    float x2, y;
    float xhalf = 0.5f * x;
    y = x;
    i = *( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 ); // what the fuck?
    y = * ( float * ) &i;
    y = y * ( 1.5f - ( x2 * y * y ) ); // 1st iteration
    return y;
}
```

* (with original comments of Quake III progammers)

Piece of code

```
float FastInvSqrt(float x) {
    long i;
    float x2, y;
    float xhalf = 0.5f * x;
    y = x;
    i = *( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 );
    y = * ( float * ) &i;
    y = y * ( 1.5f - ( x2 * y * y ) ); // 1st iteration
    return y;
}
```

* Reinterprets bits of floating-point number as an integer

Piece of code

```
float FastInvSqrt(float x) {
    long i;
    float x2, y;
    float xhalf = 0.5f * x;
    y = x;
    i = *( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 );
    // what the fuck?
    y = * ( float * ) &i;
    y = y * ( 1.5f - ( x2 * y * y ) ); // 1st iteration
    return y;
}
```

* Does integer arithmetic on it, produces an approximation to inverse square root

Piece of code

```
float FastInvSqrt(float x) {
    long i;
    float x2, y;
    float xhalf = 0.5f * x;
    y = x;
    i = *( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 );
    y = * ( float * ) &i;
    y = y * ( 1.5f - ( x2 * y * y ) ); // lst iteration
    return y;
}
```

* Reinterprets bits as floating-point number

Piece of code

```
float FastInvSqrt(float x) {
    long i;
    float x2, y;
    float xhalf = 0.5f * x;
    y = x;
    i = *( long * ) &y; // evil floating point bit level hacking
    i = 0x5f3759df - ( i >> 1 );
    y = * ( float * ) &i;
    y = y * ( 1.5f - ( x2 * y * y ) ); // 1st iteration
    return y;
}
```

* Single iteration of Newton's Method to improve the approximation

Floating point representation

* Floating point representation: $\left[x_{F}\right]_{2}=(-1)^{s}(1+m) 2^{e}$
* Exponent: add bias, signed integer [-127, 128].
* Mantissa: normalised between 0 and 1
* Integer views of exponent and mantissa: E and M
* Floating point interpretation:

$$
\begin{array}{r}
m=\frac{M}{L} \\
e=E-B
\end{array}
$$

* 32 bit floating points: $\mathrm{L}=2^{23}, \mathrm{~B}=127$

Floating point representation

* Here:

$$
\begin{aligned}
{\left[x_{F}\right]_{2} } & =(-1)^{s}(1+m) 2^{e} \\
M & =2^{21} \\
E & =124 \\
m & =\frac{M}{L}=\frac{2^{21}}{2^{23}}=0.01 \\
& e=E-B=124-127=-3 \\
x_{F}= & (-1)^{s}(1+0.01) 2^{-3}=0.00101 \\
x= & =\left[x_{F}\right]_{10}=0.15625
\end{aligned}
$$

Floating point representation

* Corresponding integer interpretation of the same bits:

$$
z_{I}=M+L E
$$

* So here:

$$
\begin{aligned}
M & =2^{21} \\
E & =124 \\
z_{I} & =2^{21}+124 \cdot 2^{23}=1042284544
\end{aligned}
$$

Inverse square root

* Back to our function:

$$
y=\frac{1}{\sqrt{x}}=x^{-\frac{1}{2}}
$$

* Take the log:

$$
\log _{2} y=-\frac{1}{2} \log _{2} x
$$

* Replace by floating point representation:

$$
\begin{gathered}
x=\left(1+m_{x}\right) 2^{e_{x}} \quad y=\left(1+m_{y}\right) 2^{e_{y}} \\
\log _{2}\left(1+m_{y}\right)+e_{y}=-\frac{1}{2}\left(\log _{2}\left(1+m_{x}\right)+e_{x}\right)
\end{gathered}
$$

Inverse square root

* The trick.
* Linear approximation of log. Choose best σ

$$
\log _{2}(1+v) \approx v+\sigma
$$

Inverse square root

* Approximate.

$$
\begin{aligned}
& \log _{2}\left(1+m_{y}\right)+e_{y}=-\frac{1}{2}\left(\log _{2}\left(1+m_{x}\right)+e_{x}\right) \\
& \approx m_{y}+\sigma+e_{y}=-\frac{1}{2}\left(m_{x}+\sigma+e_{x}\right)
\end{aligned}
$$

* Replace by integer view of exponent and mantissa:

$$
\begin{aligned}
\frac{M_{y}}{L}+\sigma+E_{y}-B & =-\frac{1}{2}\left(\frac{M_{x}}{L}+\sigma+E_{x}-B\right) \\
\frac{M_{y}}{L}+E_{y} & =-\frac{1}{2}\left(\frac{M_{x}}{L}+E_{x}\right)-\frac{3}{2}(\sigma-B) \\
M_{y}+L E_{y} & =\frac{3}{2} L(B-\sigma)-\frac{1}{2}\left(M_{x}+L E_{x}\right) \\
\mathbf{I}_{\mathbf{y}} & =\frac{3}{2} L(B-\sigma)-\frac{1}{2} \mathbf{I}_{\mathbf{x}}
\end{aligned}
$$

Inverse square root

* Integer representation operation: divide by two, add some constant.

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{y}}=\frac{3}{2} L(B-\sigma)-\frac{1}{2} \mathbf{I}_{\mathbf{x}} \\
& \mathbf{i}=0 \times 5 f 3759 \mathrm{df}-(\mathrm{i} \gg 1) ;
\end{aligned}
$$

* L and B known. σ chosen to give best approximation to log. Here:

$$
\begin{aligned}
& \sigma=0.0450465 \\
& \frac{3}{2} L(B-\sigma)=1597463007=[5 f 3759 d f]_{h e x}
\end{aligned}
$$

Inverse square root

* Precision of approximation?

* Newton step added to be even more precise
* 10% error -> 0.6% error

Conclusion

* Cool trick, floating-point operation transformed into integer addition and shift (fast).
* Can be extended to any power of x, actually.
* But SSE hardware instruction faster now, less critical!

The End

* Questions?
* References:
* http://blog.quenta.org/2012/09/0x5f3759df.html
* http://en.wikipedia.org/wiki/Fast inverse square root
* Supplementary slides

Newton step

$$
\begin{aligned}
& y_{n+1}=y_{n}-\frac{f\left(y_{n}\right)}{f^{\prime}\left(y_{n}\right)} \\
& f(y)=\frac{1}{y^{2}}-x=0 \\
& f^{\prime}(y)=-\frac{2}{y^{3}} \\
& y_{n+1}=y_{n}+\frac{y_{n}^{-2}-x}{2 y_{n}^{-3}} \\
&=\frac{2 y_{n}^{-2}+y_{n}^{-2}-x}{2 y_{n}^{-3}}=\frac{3 y_{n}-x y_{n}^{3}}{2} \\
&=y_{n}\left(\frac{3}{2}-\frac{x}{2} y_{n}^{2}\right) \\
& \mathbf{I}_{\mathbf{y}} \approx(1-p) L(\sigma-B)+p \mathbf{I}_{\mathbf{x}}
\end{aligned}
$$

Extend to any power

$$
\begin{aligned}
& \mathbf{I}_{\mathbf{y}} \approx(1-p) L(\sigma-B)+p \mathbf{I}_{\mathbf{x}} \\
& \mathbf{I}_{\mathbf{y}} \approx K_{\frac{1}{2}}+\frac{1}{2} \mathbf{I}_{\mathbf{x}} \\
& K_{\frac{1}{2}}=\frac{1}{2} L(B-\sigma)=\frac{1}{2} 2^{23}(127-0.0450465)=0 \times 1 \mathrm{fbd} 1 \mathrm{df} 5
\end{aligned}
$$

