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Non-negative unbiased estimators

Estimators of non-negative quantities (distances, probabilities) that
are unbiased and themselves non-negative.
Non-negativity constraint: want to plug in estimates into exact
approximate algorithms, e.g., simulate an event with estimated
probability
A generic problem: have unbiased estimators of Z , but need an
unbiased estimator of f (Z ) ≥ 0.

Dino Sejdinovic (Gatsby Unit, UCL) U+-estimators April 25, 2014 2 / 18



Context: Pseudo-Marginal MCMC

parameters θ, latent process F, observations y with

p(θ,F, y) = p(θ)p(F|θ)p(y|F, θ)

Interested in posterior
Often impossible to integrate out the latent process F, i.e., unable to
compute marginal likelihood p(y|θ)
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Context: Pseudo-Marginal MCMC (2)

Unable to compute correct Metropolis-Hasting acceptance
probabilities:

α(θ, θ′) = min{1, g(θ
′; y)q(θ|θ′)

g(θ; y)q(θ′|θ)
}

However, in some situations, we can obtain an unbiased Monte Carlo
estimate of p(y|θ) and thus of g(θ; y), e.g., by importance sampling
the latent process:

p̂(y|θ) =
m∑

j=1

p(y|Fj , θ)
p(Fj |θ)
Q(Fj)

Remarkably, plugging in the unbiased estimates still leads to the
correct invariant distribution p(θ|y) (Beaumont, 2003; Andrieu &
Roberts, 2009)
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Passing the unbiased estimator through a non-linearity

In the latent process model, we were able to unbiasedly and
non-negatively estimate p(θ)p(y|θ) directly, so can just plug in.

Often, p(θ)p(y|θ) = g(θ; y)f (Z (θ; y)). Maybe we can have an
unbiased estimator of Z (θ; y) but is that good for anything?
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Example: Austerity in MCMC Land (Korattikara, Chen &
Welling, 2014)

“In today’s Big Data world, we need to rethink our Bayesian inference
algorithms.”
y is BigTM: too expensive to compute log p(y|θ) =

∑n
i=1 log p(yi |θ)

so compute n
t
∑t

j=1 log p(y
∗
j |θ) instead with t � n.

Gives us an unbiased estimator of Z (θ; y) = log p(y|θ), i.e.,
f (z) = ez . Can we transform it to an unbiased and non-negative
estimator of p(y|θ)?
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Debiasing (Mc Leash, 2010; Rhee & Glynn 2012)

True S , s.t. EπS = λ parameter of interest
A sequence of biased estimators {Sn}∞n=0, with
limn→∞ Eπ [Sn] = Eπ [S ] = λ

Assume:
∑∞

n=0 Eπ |Sn − Sn−1| <∞ OR Sn ≥ Sn−1 a.s.

Lemma
Let T be an integer-valued random variable (independent of everything
else) with P [T ≥ n] > 0 ∀n. Then

S∗T =
T∑

n=0

Sn − Sn−1

P [T ≥ n]

is unbiased.
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Debiasing

Assume:
∑∞

n=0 Eπ |Sn − Sn−1| <∞ OR Sn ≥ Sn−1 a.s.

Proof.

ES∗T = E
∞∑

n=0

1{T≥n}

P [T ≥ n]
(Sn − Sn−1)

=
∞∑

n=0

ET1{T≥n}

P [T ≥ n]
Eπ (Sn − Sn−1)

=
∞∑

n=0

(EπSn − EπSn−1)

= λ.
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Debiasing

Assume:
∑∞

n=0 Eπ |Sn − Sn−1| <∞ OR Sn ≥ Sn−1 a.s.

Proposition

Let T be an integer-valued random variable (independent of everything
else) with P [T ≥ n] > 0 ∀n. Then

S∗T =
T∑

n=0

Sn − Sn−1

P [T ≥ n]

is unbiased.

Achtung! 1
P[T≥n] →∞, so variance can be infinite. Need

E
[
(S − Sn)

2
]
→ 0 faster.

Lebensgefahr! Even if all Sn ≥ 0 a.s., S∗T can be negative. Fine if
Sn ≥ Sn−1 a.s.
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Example: Russian Roulette (Girolami et al, 2013)

In this case: p(θ)p(y|θ) = g(θ;y)
Z(θ;y) , i.e., f (z) = 1/z . Introduce an

auxiliary variable v ∼ Exp (Z (θ; y)).

p(θ, v |y) ∝ Z (θ; y)e−vZ(θ;y) g(θ; y)
Z (θ; y)

= e−vZ(θ;y)g(θ; y)

Taylor expand e−vZ =
∑∞

k=0
(−v)k

k! Z k and use biased but
asymptotically unbiased estimators of e−vZ(θ;y):

Sn =
n∑

k=0

(−v)k

k!

k∏
i=1

Ẑi (θ; y)

Apply debiasing lemma. We turned a sequence of i.i.d. unbiased
estimators

{
Ẑi (θ; y)

}
i≥1

of Z (θ; y) into an unbiased estimator of

e−vZ(θ;y). Happy days!
Errm, but Sn − Sn−1 can be negative. Is it possible to ensure
non-negativity?
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Formal definition of an algorithm

Input:

A sequence X = {Xk}k≥1 of X -valued r.v’s marginally following
identical law π and EπX = Z (e.g., unbiased estimators of Z (θ; y) )
Auxiliary source of randomness U ∼ Uniform(0, 1)

Ingredients of the algorithm:

A sequence of functions Tn : (0, 1)×X n → {0, 1} (1 is the stopping
criterion for algorithm )
A sequence of functions ϕn : (0, 1)×X n → R+

Output:

A(U,X) = ϕτ (u, x1, . . . , xτ ) , τ = inf {n ≥ 0 : Tn (u, x1, . . . , xn) = 1}

For f : X → R+, we say there exists an (f ,X )-algorithm if τ is finite
a.s. and A(U,X) is an unbiased estimator of f (Z ).
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Negative results

Lemma

If f : R→ R+ is not constant, no (f ,R)-algorithm exists.

Lemma

If f : [a,∞)→ R+ is continuous, and (f , [a,∞))-algorithm exists, f is
non-decreasing.

Lemma

If f : (−∞, b]→ R+ is continuous, and (f , (−∞, b])-algorithm exists, f is
non-increasing.
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Proof

Idea: Construct X = {Xk}k≥1 and Y = {Yk}k≥1 with different means
but which agree in almost all terms.

Take z1 and z2 s.t. f (z1) > f (z2). Let EX = z1. Take ε > 0 and

{Bk}k≥1
i .i .d .∼ Bern(1− ε), and set

Yk = BkXk + (1− Bk)
z2 − z1(1− ε)

ε

so that EY = z2.
Assume A(U,X) = z1 and A(U,Y) = z2. Recall the stopping time:

τX = inf {n ≥ 0 : Tn (u, x1, . . . , xn) = 1}

Dino Sejdinovic (Gatsby Unit, UCL) U+-estimators April 25, 2014 13 / 18



Proof

Idea: Construct X = {Xk}k≥1 and Y = {Yk}k≥1 with different means
but which agree in almost all terms.
Take z1 and z2 s.t. f (z1) > f (z2). Let EX = z1. Take ε > 0 and

{Bk}k≥1
i .i .d .∼ Bern(1− ε), and set

Yk = BkXk + (1− Bk)
z2 − z1(1− ε)

ε

so that EY = z2.

Assume A(U,X) = z1 and A(U,Y) = z2. Recall the stopping time:

τX = inf {n ≥ 0 : Tn (u, x1, . . . , xn) = 1}

Dino Sejdinovic (Gatsby Unit, UCL) U+-estimators April 25, 2014 13 / 18



Proof

Idea: Construct X = {Xk}k≥1 and Y = {Yk}k≥1 with different means
but which agree in almost all terms.
Take z1 and z2 s.t. f (z1) > f (z2). Let EX = z1. Take ε > 0 and

{Bk}k≥1
i .i .d .∼ Bern(1− ε), and set

Yk = BkXk + (1− Bk)
z2 − z1(1− ε)

ε

so that EY = z2.
Assume A(U,X) = z1 and A(U,Y) = z2. Recall the stopping time:

τX = inf {n ≥ 0 : Tn (u, x1, . . . , xn) = 1}

Dino Sejdinovic (Gatsby Unit, UCL) U+-estimators April 25, 2014 13 / 18



Proof

Define events Mn = {B1 = . . . = Bn = 1}, Ln = {τX ≤ n}. Clearly,
A(U,X)1Mn∩Ln = A(U,Y)1Mn∩Ln . Pick δ < f (z1)− f (z2).

f (z2) = E [A(U,Y)]

(since A is non-negative) ≥ E [A(U,Y)1Mn∩Ln ]

(X ’s and Y ’s are the same before stopping) = E [A(U,X)1Mn∩Ln ]

({Bn} are independent of everything) = (1− ε)nE [A(U,X)1Ln ]

(for n = n(δ)large enough since limP (Ln) = 1) > (1− ε)n (f (z1)− δ)
(for ε small enough since f (z1) > f (z2)) > f (z2).
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Positive results

Lemma

If f : [a,∞)→ R+can be expressed as f (x) =
∑∞

k=0 ck(x − a)k , with
ck ≥ 0, then (f , [a,∞))-algorithm exists.

Proof.
Simply use debiasing lemma on

Sn =
n∑

k=0

ck
k∏

i=1

(Xi − a),

where Sn+1 ≥ Sn a.s.
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Positive results

Lemma

Let f : [a, b]→ R+ be continuous such that ∃m, n ∈ N and δ > 0, s.t.

f (x) ≥ δmin {(x − a)m, (b − x)n} , ∀x ∈ [a, b].

Then (f , [a, b])-algorithm exists.

Proof.
Since f (x)/((x − a)m (b − x)n) is bounded away from zero on (a, b), can
approximate it arbitrarily well from below in terms of Bernstein polynomials
with non-negative coefficients. Then apply debiasing lemma to these
approximations.

Can be viewed as a consequence of the Bernoulli factory theorem from
(Keane & O’Brien 1994).
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Positivation Lemma

Lemma
Let a < 0 < b and assume that X = {Xk}k≥1 are [a, b]-valued. If
EπX = Z is bounded away from zero, i.e., Z > η > 0, there exists an
algorithm for which A(U,X) is a non-negative unbiased estimator of Z .

Proof.
It’s an algorithm with f (z) = max(η, z) which satisfies the polynomial
lower bound. And obviously f (Z ) = Z .
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Summary

Non-negative unbiased estimators of f (EX ) for a non-constant f
based on X -samples are impossible without domain restrictions on X .
We can get exact approximate austerity in MCMC if and only if we
can bound log p(y|θ) from below (!)
Unbiased estimators of positive quantities bounded away from zero
can be positivised.
Close relation to the Bernoulli Factory problem: get an f (p) coin from
a p-coin.
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