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Non-negative unbiased estimators

e Estimators of non-negative quantities (distances, probabilities) that
are unbiased and themselves non-negative.

@ Non-negativity constraint: want to plug in estimates into exact
approximate algorithms, e.g., simulate an event with estimated
probability

@ A generic problem: have unbiased estimators of Z, but need an
unbiased estimator of f(Z) > 0.
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-
Context: Pseudo-Marginal MCMC

@ parameters 6, latent process F, observations y with

p(0,F,y) = p(0)p(F|0)p(y|F,0)
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-
Context: Pseudo-Marginal MCMC

@ parameters 6, latent process F, observations y with

p(0,F,y) = p(0)p(F|0)p(y|F,0)
@ Interested in posterior

_g(0:y)  p(9)p(y|6)
PO =70y =~ 2(y)
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-
Context: Pseudo-Marginal MCMC

@ parameters 6, latent process F, observations y with

p(0,F,y) = p(0)p(F|0)p(y|F,0)
@ Interested in posterior

_ &(0:y) _ p(0)p(yl0) _ p(6)/ p(FI0)p(y|F,0)dF
POM) =700y =~ Z(y) z<y)

e Often impossible to integrate out the latent process F, i.e., unable to
compute marginal likelihood p(y|6)
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N
Context: Pseudo-Marginal MCMC (2)

@ Unable to compute correct Metropolis-Hasting acceptance
probabilities:

0(0,0) = min{1, £ Y)90010')

£(0.y)a@')
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N
Context: Pseudo-Marginal MCMC (2)

@ Unable to compute correct Metropolis-Hasting acceptance
probabilities:

g(0';y)q(0]¢')
g(0:y)q(0')0)
@ However, in some situations, we can obtain an unbiased Monte Carlo

estimate of p(y|0) and thus of g(0;y), e.g., by importance sampling
the latent process:

a(6,0') = min{1, }

- p(F;19)

plyl0) = JZPI Q)
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N
Context: Pseudo-Marginal MCMC (2)

@ Unable to compute correct Metropolis-Hasting acceptance
probabilities:

20" y)q(01¢')
" 5(0:v)q(0'10)
@ However, in some situations, we can obtain an unbiased Monte Carlo

estimate of p(y|0) and thus of g(0;y), e.g., by importance sampling
the latent process:

a(0,0") = min{1 }

plyl0) = ZP (yIF ("9))
Jj=

@ Remarkably, plugging in the unbiased estimates still leads to the
correct invariant distribution p(6]y) (Beaumont, 2003; Andrieu &
Roberts, 2009)
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.
Passing the unbiased estimator through a non-linearity

@ In the latent process model, we were able to unbiasedly and
non-negatively estimate p(0)p(y|0) directly, so can just plug in.
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.
Passing the unbiased estimator through a non-linearity

@ In the latent process model, we were able to unbiasedly and
non-negatively estimate p(0)p(y|0) directly, so can just plug in.

e Often, p(0)p(y|6) = g(0;y)f(Z(0;y)). Maybe we can have an
unbiased estimator of Z(6;y) but is that good for anything?

Dino Sejdinovic (Gatsby Unit, UCL) U™ -estimators April 25, 2014 5 /18



Example: Austerity in MCMC Land (Korattikara, Chen &
Welling, 2014)

@ "“In today's Big Data world, we need to rethink our Bayesian inference
algorithms.”

e y is Big™: too expensive to compute log p(y|d) = i log p(yilf)
so compute ¥ j:l log p(y;'|0) instead with t < n.

@ Gives us an unbiased estimator of Z(0;y) = log p(y|0), i.e.,
f(z) = e*. Can we transform it to an unbiased and non-negative
estimator of p(y|0)?

= i I =
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|
Debiasing (Mc Leash, 2010; Rhee & Glynn 2012)

@ True S, s.t. E;S = X parameter of interest

@ A sequence of biased estimators {S,}7, with
limpoo Er [Sn] = Ex [S] = A
o Assume: y ° (E.|S, — Sp—1] <00 OR S, > 5,1 ass.
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|
Debiasing (Mc Leash, 2010; Rhee & Glynn 2012)

@ True S, s.t. E,S = ) parameter of interest
@ A sequence of biased estimators {S,}7, with
limp—oo Ex [Sn] = Ex [S] = A
o Assume: y ° (E.|S, — Sp—1] <00 OR S, > 5,1 ass.

Lemma
Let T be an integer-valued random variable (independent of everything
else) with P[T > n] > 0 ¥Yn. Then

T

03 o Sn_snfl
S = ;P[Tzn]

is unbiased.
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-
Debiasing

o Assume: Y ° (E.|S, — Sp—1] <00 OR S, > 5,1 ass.

Proof.
o0 1
* E {T>n} _
B Z Erlir>n
N n=0 ]:P) [T Z ] ]Eﬂ- (Sn Snil)
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Debiasing

o Assume: Y ° (E.|S, — Sp—1] <00 OR S, > 5,1 ass.

Proposition

Let T be an integer-valued random variable (independent of everything

else) with P[T > n] > 0 Vn. Then
T
* Sn— Sn-1
ST = Z_% P[T > n]

is unbiased.

@ Achtung! ﬁ — 00, S0 variance can be infinite. Need

E [(5 - 5,,)2} — 0 faster.
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Debiasing

o Assume: Y ° (E.|S, — Sp—1] <00 OR S, > 5,1 ass.
Proposition

Let T be an integer-valued random variable (independent of everything
else) with P[T > n] > 0 Vn. Then

-
03 o 5,,—5,771
ST = ;P[TZn]

is unbiased.

@ Achtung! W — 00, S0 variance can be infinite. Need

E [(5 - 5,,)2} — 0 faster.

o Lebensgefahr! Even if all S, > 0 a.s., S3 can be negative. Fine if
5,>S5,_1 as.
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N
Example: Russian Roulette (Girolami et al, 2013)

e In this case: p(0)p(y|d) = 2(9 y)), i.e., f(z) =1/z. Introduce an

auxiliary variable v ~ Exp (Z(6;y)).

p(0,vly) Z(g;y)e—vz(e;y)g(e;y)

— o—vZ(0y) 0
e g\, y

N
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N
Example: Russian Roulette (Girolami et al, 2013)

o In this case: p(0)p(y|0) = Wy))' i.e.,, f(z) =1/z. Introduce an

auxiliary variable v ~ Exp (Z(6;y)).

—vZ(6: 0; —vZ(6:
p(0,vly) o Z(0;y)e z2om EVY) _ 2% g(0;y)

Z(0:y)
o Taylor expand ™% = >72° 0 ) 7k and use biased but
asymptotically unbiased estlmators of e=vZ(%y);

n

5, =345

k=0

k
Hzﬂy
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N
Example: Russian Roulette (Girolami et al, 2013)

o In this case: p(0)p(y|0) = Wy))' i.e.,, f(z) =1/z. Introduce an

auxiliary variable v ~ Exp (Z(6;y)).

—vZ(6: 0; —vZ(6:
pO.Vly) x Z(0:y)e Z“"”g((a-i):e 202 g(6:y)

Zk and use biased but
—vZ(0:y).

~—

o Taylor expand ™% = >72° 0

n

asymptotically unbiased estlmators of e
k
Sn = Z H2 0;y)
k=0 i=1
@ Apply debiasing lemma. We turned a sequence of i.i.d. unbiased

estimators {2,-(9; y)}.>1 of Z(0;y) into an unbiased estimator of
e—vZ(é);y) |

. Happy days!
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N
Example: Russian Roulette (Girolami et al, 2013)

o In this case: p(0)p(y|0) = Wy))' i.e.,, f(z) =1/z. Introduce an

auxiliary variable v ~ Exp (Z(6;y)).

—vZ(6: 0; —vZ(6:
pO.Vly) x Z(0:y)e Z“"”g((a-i):e 202 g(6:y)

Zk and use biased but
—vZ(0:y).

~—

o Taylor expand ™% = >72° 0

n

asymptotically unbiased estlmators of e
k
Sp = Z H Zi(6;y)
k=0 i=1
@ Apply debiasing lemma. We turned a sequence of i.i.d. unbiased

estimators {2,-(9; y)}.>1 of Z(0;y) into an unbiased estimator of
e—vZ(G;y) |

. Happy days!
@ Errm, but S, — S,,_1 can be negative. Is it possible to ensure
non-negativity?
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Formal definition of an algorithm

@ Input:

o A sequence X = { Xy}, of X-valued r.v's marginally following
identical law 7 and E, X = Z (e.g., unbiased estimators of Z(¢;y) )
o Auxiliary source of randomness U ~ Uniform(0, 1)
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Formal definition of an algorithm

@ Input:

o A sequence X = { Xy}, of X-valued r.v's marginally following
identical law 7 and E, X = Z (e.g., unbiased estimators of Z(¢;y) )
o Auxiliary source of randomness U ~ Uniform(0, 1)

@ Ingredients of the algorithm:

o A sequence of functions T, : (0,1) x X" — {0,1} (1 is the stopping
criterion for algorithm )
o A sequence of functions ¢, : (0,1) x X" — R*
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Formal definition of an algorithm

@ Input:

o A sequence X = { Xy}, of X-valued r.v's marginally following
identical law 7 and E, X = Z (e.g., unbiased estimators of Z(¢;y) )
o Auxiliary source of randomness U ~ Uniform(0, 1)

@ Ingredients of the algorithm:

o A sequence of functions T, : (0,1) x X" — {0,1} (1 is the stopping
criterion for algorithm )
o A sequence of functions ¢, : (0,1) x X" — R*

o Output:
AU, X) =7 (uyx1,..., %), 7=inf{n>0 : Tp(u,x1,...,xn) =1}
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Formal definition of an algorithm

@ Input:

o A sequence X = { Xy}, of X-valued r.v's marginally following
identical law 7 and E, X = Z (e.g., unbiased estimators of Z(¢;y) )
o Auxiliary source of randomness U ~ Uniform(0, 1)

@ Ingredients of the algorithm:

o A sequence of functions T, : (0,1) x X" — {0,1} (1 is the stopping
criterion for algorithm )
o A sequence of functions ¢, : (0,1) x X" — R*

o Output:
AU, X) =7 (uyx1,..., %), 7=inf{n>0 : Tp(u,x1,...,xn) =1}
e For f : X — R™, we say there exists an (f, X)-algorithm if 7 is finite
a.s. and A(U, X) is an unbiased estimator of f(Z).
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Negative results

Lemma

If f : R — R* is not constant, no (f,R)-algorithm exists.

Lemma

If f :[a,00) — R* is continuous, and (f,[a, >0))-algorithm exists, f is
non-decreasing.

Lemma

If f . (—o0, b] — R is continuous, and (f,(—oo, b])-algorithm exists, f is
non-increasing.
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]
Proof

o Idea: Construct X = {Xk},>; and Y = { Yy}, with different means
but which agree in almost all terms.
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]
Proof

o Idea: Construct X = {Xk},>; and Y = { Yy}, with different means
but which agree in almost all terms.

o Take z1 and 2, s.t. f(z1) > f(z). Let EX = z,. Take ¢ > 0 and
{Bk}ti>1 S Bern(1 — ¢), and set

~ (1 —
Y = BXe+(1-— Bk)w

sothat EY = 2.
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]
Proof

o Idea: Construct X = {Xk},>; and Y = { Yy}, with different means
but which agree in almost all terms.

o Take z1 and 2, s.t. f(z1) > f(z). Let EX = z,. Take ¢ > 0 and
{Bk}ti>1 S Bern(1 — ¢), and set

~ (1 —
Y = BXe+(1-— Bk)w

sothat EY = 2.
o Assume A(U,X) = z; and A(U,Y) = z5. Recall the stopping time:

X = mf{nzo . Tn(U,Xl,---,Xn) = 1}
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]
Proof

@ Define events M, = {B; = ... = B, =1}, L, = {7x < n}. Clearly,
A(U,X)anan = .A(U,Y)].Mnan. Pick § < f(Zl) — f(Zz).

Dino Sejdinovic (Gatsby Unit, UCL) U™ -estimators April 25, 2014 14 / 18



]
Proof

@ Define events M, = {B; = ... = B, =1}, L, = {7x < n}. Clearly,
A(U,X)anan = .A(U,Y)].Mnan. Pick § < f(Zl) — f(ZQ).

f(z) = BIAU,Y)]
(since A is non-negative) > E[A(U,Y)1lpm,L,]
(X's and Y's are the same before stopping) = E[A(U, X)1pm,nL,]
({B,} are independent of everything) = (1—¢)"E[A(U,X)1,]
) > (=)' (f(z1) - 9)
)

> f(z).

(for n = n(d)large enough since limP(L,) =1
(for € small enough since f(z1) > f(z)

Dino Sejdinovic (Gatsby Unit, UCL) U™ -estimators April 25, 2014 14 / 18



Positive results

Lemma

If f : [a,00) — R"can be expressed as f(x)
ck > 0, then (f,[a, 00))-algorithm exists.

= 3" ck(x — a)k, with

Proof.

Simply use debiasing lemma on

| —a);

k
Sn=>_a ][
k=0 =1
where S,11 > S, ass.
U™ -estimators
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Positive results

Lemma
Let f : [a, b] — R be continuous such that 3m,n € N and 6 > 0, s.t.
f(x)>dmin{(x—a)",(b—x)"}, VxE€ |[a,b].

Then (f,[a, b])-algorithm exists.

Proof.

Since f(x)/((x — a)™ (b — x)") is bounded away from zero on (a, b), can
approximate it arbitrarily well from below in terms of Bernstein polynomials
with non-negative coefficients. Then apply debiasing lemma to these
approximations. [

v
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Positive results

Lemma
Let f : [a, b] — R be continuous such that 3m,n € N and 6 > 0, s.t.
f(x)>dmin{(x—a)",(b—x)"}, VxE€ |[a,b].

Then (f,[a, b])-algorithm exists.

Proof.

Since f(x)/((x — a)™ (b — x)") is bounded away from zero on (a, b), can
approximate it arbitrarily well from below in terms of Bernstein polynomials
with non-negative coefficients. Then apply debiasing lemma to these
approximations. [

v

Can be viewed as a consequence of the Bernoulli factory theorem from
(Keane & O'Brien 1994).
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Positivation Lemma

Lemma

Let a <0 < b and assume that X = {Xy},~, are [a, b]-valued. If
E.X = Z is bounded away from zero, i.e., Z > n > 0, there exists an
algorithm for which A(U, X) is a non-negative unbiased estimator of Z.

Proof.

It's an algorithm with f(z) = max(n, z) which satisfies the polynomial
lower bound. And obviously f(Z) = Z. O

4
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Summary

@ Non-negative unbiased estimators of f(IEX) for a non-constant f
based on X-samples are impossible without domain restrictions on X.

@ We can get exact approximate austerity in MCMC if and only if we
can bound log p(y|#) from below (!)

@ Unbiased estimators of positive quantities bounded away from zero
can be positivised.

@ Close relation to the Bernoulli Factory problem: get an f(p) coin from
a p-coin.
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