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Problem setup

We want to minimize the squared error

£(f) = /X | NFO) = 1B di ).

for some Hilbert spaces X', ). If there were no constraints on f, the best
solution would be:

f(x) = /y ydp(y|x).

GET T Ty 1= S DIRVA L PN I S a2 W O ptimal Rates for Regularized Least-Squs: February 18, 2013 2 /18



Problem setup

We want to minimize the squared error

£(f) = /X | NFO) = 1B di ).

for some Hilbert spaces X', ). If there were no constraints on f, the best
solution would be:

f(x) = /y ydp(y|x).

In practice, f is in a hypothesis class H.
A learning algorithm is universally consistent if it takes data
z:=((x1,y1),---,(xe,ye)), returns f, € H such that

lim P[E(fz)—fini[[f] >e] =0 Ve>0
€

L— 00

(meaning: only as good as best function in )
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Motivating example: ) = R”

We propose to solve this with a vector-valued RKHS
Motivating example: kernel ridge regression to ) = R".
We write elements of H as vectors of scalar-valued RKHS functions,

fF()=1[Aa() ... fl)],

with inner product
n

<f7g>7-[ = Z <ﬁ'agi>7-[,- .

i=1

We write K(x, t) as an n x n diagonal matrix,

K(x,t) = diag [ ki(x,t) ... ka(x,t) ].
K, = diag [ ki(x,-) ... kn(x,-) ]
Optimal Rates for Regularized Least-Squ: February 18, 2013 3 /18



.
The two essential RKHS properties: ) = R”

Property 1: Reproducing property

<ny7 f)’H = <y7 f(X»y

This holds, since

n

Ky, Fpy = > yiki(xiy ), (),

i
i=1

Property 2: reprooducing property between kernels:

(v, K(x,t)z)y, = y ' diag [ ki(x,t) ... ka(x,t) ]z
= > iki(x, ) ziki(t )y,
i=1
= <ny, Ktz>’;'-[ .
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|
A non-diagonal case, Y = R”

e jc{l,...,m}
@ Dj an r x r diagonal matrix of scalar valued kernels.

@ Aj an r x n matrix

A valid R" valued kernel is

K(x.t)=>_ Al DA
j=1
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|
A non-diagonal case, Y = R”

e jc{l,...,m}
@ Dj an r x r diagonal matrix of scalar valued kernels.

@ Aj an r x n matrix

A valid R" valued kernel is
K(x.t)=>_ Al DA
j=1

In general case (infinite dimensional):

K., Y—o>HcCY¥
Kx,u) Y—=Y
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Least squares regression

Empirical problem setting: minimize

ZHyJ FODIS + A IFll5, -

The unique minimizer of the above takes the form:

¢
:ZK C
j=1

where ¢; € ) are the solutions to

FﬂN

K(xj, xi) + pdj) ci = y;
=1
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|
Example: tensor product RKHS (not in paper!)

Infinite dimensional case: the previous diagonal example generalizes
straightforwardly

@ Recall tensor product definition:
[y @ x]Ju = y(x, u) x.

o We define
ny =yex
The map Kj is a linear operator from ) to H C V¥ as required: given
u € X, it is defined as
[Keyl (v) = [y @ x]u
y{x,u)x € ).
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|
Example: tensor product RKHS (not in paper!)

o We define
K(X7 U) = /y <X7 U>X :
This is a map from Y — Y as required.
@ We want to ensure the relation
<ny7 Kuv>’H = <V7 K(X7 U)}’>y .
This just the standard Hilbert-Schmidt inner product, matrix analogue
is tr(A' B):
<ny7 Kuv>’H = <y ® X,V 029 U>HS
= (v,[y @ x] u)y,

= <v, lg (x, u>Xy>
———

K(x,u) Y

= <X7 U>X <y7 V>y .
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Form of result

The "upper rate” obtained is:

lim limsupsup P, [5 [fz)"f} — finLS[f] >T1ay| =0
S

T=X0 (00 pEP

(a)
for £ obtained via least squares regression, where

Q@ Term (a) is event “error of £;* compared to best f € H is worse than
Tay for given p, /.
© sup,cp is “hardest” probability in the family, given ¢

@ limsup,_,, is the limiting upper bound. Eg. for different ¢, a different
p might be the hardest.

@ lim,_ o since there is a constant 7 in front of oy, which we don't
want to figure out. l.e. for some “sufficiently large value of 7" (and
hence all 7 above it) the limit is zero.
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N
Assumptions on distribution (1)

Family of probabilities is P(b,c). Here 1 < b < o0, 1 <c <2
Assumptions:

@ y has finite variance,

/ Iyl2dp(x, ) < o,

@ A noise assumption is satisfied: noise must be bounded, Gaussian, or

sub-Gaussian. Technical condition:
— there are two positive constants ¥, M such that

v— I (@l - X 2
(9) /;/ <6|M<)| o Hy J;’Z( )HY _ 1> d,o(y\:l:) < by

- 2M?
for px-almost all x € X.
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N
Assumptions on the distribution (2)

Define covariance operator T on random variable X,
Ty = KK € L(H) T ::/ Tedpx(x).
X

Given the singular value decomposition (where N can be +00),

N
T := Z tn(-, en)pen
n=1

@ Assume N = 400, then 3o, 8 > 0 such that
a < nbtn <pB

(effective dimension of H wrt py)
@ The infimum infscy[f] is attained at fy satisfying, for
lgll3, < R < oo,
fy = T2
(complexity of regression function)
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]
The bound

Theorem 1. Given 1 <b< 400 and 1 < ¢ <2, let

(1) b<4oo e>1

(19) Ao = (lofl)ﬁ b<+4+o0 c=1

1)z b=+oo
and

(5)71 b<+4o0 c>1

(20) ag = (lol%l)ﬁ b<+4+oco c=1
1 b= +oo
then
(21) lim limsup sup P, [E[f)*] — E[fu] > Tar] =0

T 400 peEP(bye)
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.
The bound being used

K is real separable Hilbert space. £ is random variable on K. Assume there
exists positive constants L,o such that

1
E (¢~ B¢IR) < 3mio®L"2 Ym =2,

Then ,
1 L o 2
P||= ;i —E <2(=-4+—)log=| >1—mn.
”525 gK <€ x/2> gn] 7
True when:
[€@le < 3 as
Efll¢lle] < o
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How is the proof done?

Define fy as the argument of the infimum (i.e., assume it is attained).
Then
£ [f}e} — E[fu] < AN + S\, 2) + Sa(N, 2)

where:

o A(N) := E(f) — E(f), and f* is the population regularized solution
(A(X) is bias term)

2
o S51(\,z) = Hﬁ( Tx +2N) (g — TX{H)H%' converges via bound

under noise assumption on p(y|x).

2
o S(\,z) = Hﬁ( Tx + A)"UT — T)(F - fH)HH converges since we

can prove mean and variance requirement for bound.
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-
Why “optimal™?

When ) is finite dimensional, the upper bound is matched by a minimax
lower rate: the "best you can do":

lim lim inf inf sup P, ¢ |E[fL] — inf E[f] > >0,
7 Pl g o P | U] = EL7] > o
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Boundedness

Definition (Operator norm)

The operator norm of a linear operator A : F — G is defined as

4|
Al = sup -0
e 17

If ||A]] < oo, Ais called a bounded linear operator.
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Boundedness

Definition (Operator norm)

The operator norm of a linear operator A : F — G is defined as

4|
Al = sup -
rer s

If ||A]] < oo, Ais called a bounded linear operator.

| Al is the smallest number A such that the inequality [|Af||; < A ||f]| £
holds for every f € F.
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Boundedness

Definition (Operator norm)

The operator norm of a linear operator A : F — G is defined as

4|
Al = sup -0
e 17

If ||A]] < oo, Ais called a bounded linear operator.

| Al is the smallest number A such that the inequality [|Af||; < A ||f]| £
holds for every f € F.

bounded operator # bounded function
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Generalization of the parallelogram law

The following is a generalization of the parallelogram law:
X[+ 1y 112+ l12[17 + [1x + y + 2|2 =[x+ ylI? + lly + 2]+ |2+ ] (1)

Then apply ||x + y||? < 2||x||? + 2||ly||? and the parallelogram relation for
the remaining two norms on the left, to get

2 2 2 2 2 2 2
IXI=+ Iy 17+ 112117 4 [x 4y + 2[17 < 4llx(1= + 4lly (| + 4]z

and hence
Ix +y + 2P <3 ([IxI7 + llylI> + 1z]I) -
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Proof: generalization of parallelogram law

To now prove (1): start with the standard parallelogram identity,
2 2 2
[+ Y117 = lIx[1" = Nyl +2¢x, y).-

Then defining x4 = xq,

3 3 3 3
D i A xialP =Y Il =Y Il ) 206, xig1)
i=1 i=1 i=1 i=1
3 2
> %
i=1
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