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Problem setup

We want to minimize the squared error

E(f ) =
ˆ
X×Y

‖f (x)− y‖2Y dρ(x , y),

for some Hilbert spaces X , Y. If there were no constraints on f , the best
solution would be:

fρ(x) =
ˆ
Y

ydρ(y |x).

In practice, f is in a hypothesis class H.
A learning algorithm is universally consistent if it takes data
z := ((x1, y1), . . . , (x`, y`)), returns fz ∈ H such that

lim
`→∞

P
[
E(fz)− inf

f ∈H
[f ] > ε

]
= 0 ∀ε > 0

(meaning: only as good as best function in H)
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Motivating example: Y = Rn

We propose to solve this with a vector-valued RKHS
Motivating example: kernel ridge regression to Y = Rn.
We write elements of H as vectors of scalar-valued RKHS functions,

f (·) :=
[

f1(·) . . . fn(·)
]
,

with inner product

〈f , g〉H =
n∑

i=1

〈fi , gi 〉Hi
.

We write K (x , t) as an n × n diagonal matrix,

K (x , t) = diag
[

k1(x , t) . . . kn(x , t)
]
.

Kx = diag
[

k1(x , ·) . . . kn(x , ·)
]
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The two essential RKHS properties: Y = Rn

Property 1: Reproducing property

〈Kxy , f 〉H = 〈y , f (x)〉Y .

This holds, since

〈Kxy , f 〉H =
n∑

i=1

〈yiki (xi , ·), fi (·)〉Hi

Property 2: reprooducing property between kernels:

〈y ,K (x , t)z〉Y = y>diag
[

k1(x , t) . . . kn(x , t)
]
z

=
n∑

i=1

〈yiki (x , ·), ziki (t, ·)〉Hi

= 〈Kxy ,Ktz〉H .
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A non-diagonal case, Y = Rn

j ∈ {1, . . . ,m}
Dj an r × r diagonal matrix of scalar valued kernels.
Aj an r × n matrix

A valid Rn valued kernel is

K (x , t) =
m∑

j=1

A>j DjAj .

In general case (infinite dimensional):

Kx Y → H ⊂ YX
K (x , u) Y → Y
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Least squares regression

Empirical problem setting: minimize

E (f ) =
∑̀

j=1

‖yj − f (xj)‖2Y + λ ‖f ‖2H .

The unique minimizer of the above takes the form:

f λz =
∑̀

j=1

Kxj cj

where cj ∈ Y are the solutions to

∑̀

i=1

(K (xj , xi ) + µδij) ci = yj
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Example: tensor product RKHS (not in paper!)

Infinite dimensional case: the previous diagonal example generalizes
straightforwardly

Recall tensor product definition:

[y ⊗ x ]u = y〈x , u〉X .

We define
Kxy = y ⊗ x

The map Kx is a linear operator from Y to H ⊂ YX as required: given
u ∈ X , it is defined as

[Kxy ] (u) = [y ⊗ x ]u
y〈x , u〉X ∈ Y.
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Example: tensor product RKHS (not in paper!)

We define
K (x , u) := IY 〈x , u〉X .

This is a map from Y → Y as required.
We want to ensure the relation

〈Kxy ,Kuv〉H = 〈v ,K (x , u)y〉Y .
This just the standard Hilbert-Schmidt inner product, matrix analogue
is tr(A>B):

〈Kxy ,Kuv〉H = 〈y ⊗ x , v ⊗ u〉HS

= 〈v , [y ⊗ x ] u〉Y

=

〈
v , IG 〈x , u〉X︸ ︷︷ ︸

K(x ,u)

y

〉

Y

= 〈x , u〉X 〈y , v〉Y .
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Form of result

The “upper rate” obtained is:

lim
τ→∞

lim sup
`→∞

sup
ρ∈P

Pz∼ρ`

[
E
[
f λ`z

]
− inf

f ∈H
E [f ] > τα`

]

︸ ︷︷ ︸
(a)

= 0

for f λ`z obtained via least squares regression, where
1 Term (a) is event “error of f λ`z compared to best f ∈ H is worse than
τα` for given ρ, `.

2 supρ∈P is “hardest” probability in the family, given `
3 lim sup`→∞ is the limiting upper bound. Eg. for different `, a different
ρ might be the hardest.

4 limτ→∞ since there is a constant τ in front of α`, which we don’t
want to figure out. I.e. for some “sufficiently large value of τ ” (and
hence all τ above it) the limit is zero.
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Assumptions on distribution (1)

Family of probabilities is P(b, c). Here 1 ≤ b <∞, 1 ≤ c ≤ 2.
Assumptions:

1 y has finite variance,
ˆ
‖y‖2Ydρ(x , y) <∞,

2 A noise assumption is satisfied: noise must be bounded, Gaussian, or
sub-Gaussian. Technical condition:
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Hypothesis 2. The probability measure ρ on Z satisfies the following properties

(7)

�

Z

�y�2
Y dρ(x, y) < +∞,

– there exists fH ∈ H such that

(8) E [fH] = inf
f∈H

E [f ],

where E [f ] =
�

Z
�f(x) − y�2

Y dρ(x, y);
– there are two positive constants Σ, M such that

(9)

�

Y

�
e
�y−fH(x)�Y

M − �y − fH(x)�Y

M
− 1

�
dρ(y|x) ≤ Σ2

2M2

for ρX -almost all x ∈ X.

We now briefly discuss the consequences of the above assumptions.
If Y = R, the operator Kx can be identified with the vector Kx1 ∈ H and (4)
reduces to

f(x) = �f, Kx� f ∈ H, x ∈ X,

so that H is a reproducing kernel Hilbert space [2] with kernel

(10) K(x, t) = �Kt,Kx�H .

In fact, the theory of reproducing kernel Hilbert spaces can naturally be extended
to vector valued functions [25]. In particular, the assumption that Kx is a Hilbert-
Schmidt operator is useful in keeping the generalized theory similar to the scalar
one. Indeed, let L(Y ) be the space of bounded linear operators on Y with the
uniform norm �·�L(H). In analogy with (10), let K : X ×X → L(Y ) be the (vector

valued) reproducing kernel

K(x, t) = K∗
xKt x, t ∈ X.

Since Kx is an Hilbert-Schmidt operator, there is a basis (vj(x))j of Y and an
orthogonal sequence (kj(x))j of vector in H such that

Kxv =
�

j

�v, vj(x)�Y kj(x) v ∈ Y

with the condition
�

j �kj(x)�2
H < +∞. The reproducing kernel becomes

K(x, t)v =
�

j,m

�kj(t), km(x)� �v, vj(t)� vm(x) v ∈ Y,

and (6) is equivalent to
�

j

�kj(x)�2
H ≤ κ x ∈ X.

Remark 1. If Y is finite dimensional, any linear operator is Hilbert-Schmidt and (4)
is equivalent to the fact that the evaluation functional on H

f �→ f(x) ∈ Y

is continuous for all x ∈ X. Moreover, the reproducing kernel K takes values in
the space of d × d-matrices (where d = dimY ). In this finite dimensional setting
the vector valued RKHS formalism can be rephrased in terms of ordinary scalar
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Assumptions on the distribution (2)

Define covariance operator T on random variable X ,

Tx = KxK ∗x ∈ L(H) T :=

ˆ
X

TxdρX (x).

Given the singular value decomposition (where N can be +∞),

T :=
N∑

n=1

tn〈·, en〉Hen.

1 Assume N = +∞, then ∃ α, β > 0 such that

α ≤ nbtn ≤ β
(effective dimension of H wrt ρx)

2 The infimum inff ∈H[f ] is attained at fH satisfying, for
‖g‖2H ≤ R <∞,

fH = T (c−1)/2g

(complexity of regression function)
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The bound
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Theorem 1. Given 1 < b ≤ +∞ and 1 ≤ c ≤ 2, let

(19) λ� =





( 1
� )

b
bc+1 b < +∞ c > 1

( log �
� )

b
b+1 b < +∞ c = 1

( 1
� )

1
2 b = +∞

and

(20) a� =





(1
� )

bc
bc+1 b < +∞ c > 1

( log �
� )

b
b+1 b < +∞ c = 1

1
� b = +∞

then

(21) lim
τ→∞

lim sup
�→∞

sup
ρ∈P(b,c)

Pz∼ρ�

�
E [fλ�

z ] − E [fH] > τa�

�
= 0

The above result gives a family of upper rates of convergence for the RLS al-
gorithm as defined in (1). The following theorem proves that the corresponding
minimax lower rates (see eq. (2)) hold.

Theorem 2. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2, then

lim
τ→0

lim inf
�→+∞

inf
f�

sup
ρ∈P(b,c)

Pz∼ρ�

�
E [f �

z ] − E [fH] > τ�−
bc

bc+1

�
= 1.

The above result shows that the rate of convergence given by the RLS algorithm
is optimal when Y is finite dimensional for any 1 < b < +∞ (i.e. N = +∞) and
1 < c ≤ 2 and that it is optimal up to a logarithmic factor for c = 1.

Finally, we give a result about the individual lower rates in expectation (see
eq. (3)).

Theorem 3. Assume that dim Y = d < +∞, 1 < b < +∞ and 1 ≤ c ≤ 2. Then,
for every B > b the following individual lower rate holds

inf
{f�}�∈N

sup
ρ∈P(b,c)

lim sup
�→+∞

Ez∼ρ�(E [f �
z ] − E [fH])

�−
cB

cB+1

> 0,

where the infimum is over the set of all learning algorithms {f�}�∈N.

The advantage of individual lower rates over minimax lower rates have already
been discussed in Sections 1 and 2. Here we add that the proof of the theorem above
can be straightforwardly modified in order to extend the range of the infimum
to general randomized learning algorithms, that is algorithms whose outputs are
random variables depending on the training set. Such a generalization seems not
an easy task to accomplish in the standard minimax setting. It should also be
remarked that the condition 1 ≤ c ≤ 2 in Th. 3 has been introduced to keep
homogeneous the notations throughout the sections of the paper, but it could be
relaxed to 0 ≤ c ≤ 2.

5. Proofs

In this section we give the proofs of the three theorems stated above.

Caponnetto, De Vito (Arthur Gretton’s notes)Optimal Rates for Regularized Least-Squares AlgorithmFebruary 18, 2013 12 / 18



The bound being used

K is real separable Hilbert space. ξ is random variable on K. Assume there
exists positive constants L,σ such that

E (‖ξ − Eξ‖mK) ≤
1
2
m!σ2Lm−2 ∀m ≥ 2.

Then

P

[∥∥∥∥∥
1
`

∑̀

i=1

ξi − Eξ

∥∥∥∥∥
K

≤ 2
(

L
`
+

σ√
`

)
log

2
η

]
≥ 1− η.

True when:
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By means of (4), T and g are explicitly given by

(29) (Tf)(x) = K∗
xTf =

�

X

K∗
x(KtK

∗
t )f dρX(t) =

�

X

K(x, t)f(t) dρX(t),

so T acts as the integral operator of kernel K, and

(30) g(x) = K∗
t g =

�

X

K(x, t)fρ(t) dρX(t).

We also need the following probabilistic inequality based on a result of [21], see
also Th. 3.3.4 of [35].

Proposition 2. Let (Ω, F , P ) be a probability space and ξ be a random variable
on Ω taking value in a real separable Hilbert space K. Assume that there are two
positive constants L and σ such that

(31) E[�ξ − E[ξ]�m
K ] ≤ 1

2
m!σ2Lm−2 ∀m ≥ 2,

then, for all � ∈ N and 0 < η < 1, then

(32) P(ω1,...,ω�)∼P �

������
1

�

��

i=1

ξ(ωi) − E[ξ]

�����
K
≤ 2

�
L

�
+

σ√
�

�
log

2

η

�
≥ 1 − η.

In particular, (31) holds if

(33)
�ξ(ω)�K ≤ L

2 a.s

E[�ξ�2
K] ≤ σ2.

5.2. Upper rates. The main steps in the proof of the upper rate of convergence
given in Th. 1 are the following.
First, given a probability distribution ρ satisfying Hypothesis 2, Th. 4 gives an
upper bound for E [fλ

z ]−E [fH] that holds in probability for any small enough λ and
any large enough � (see (35)). The bound is controlled by the following quantities
parametrized by λ > 0,

(1) the residual

A(λ) = E [fλ] − E [fH] =
���
√

T (fλ − fH)
���

2

H
,

where fλ ∈ H is the minimizer of the regularized expected risk (see item
v) of Prop. 1) and the second equality is a consequence of (24).

(2) the reconstruction error

B(λ) =
��fλ − fH

��2

H ,

(3) the effective dimension

N (λ) = Tr[(T + λ)−1T ],

which is finite due to the fact that T is trace class (see item ii) of Prop. 1).

Roughly speaking, the effective dimension N (λ) controls the complexity of the
hypothesis space H according to the marginal measure ρX , whereas A(λ) and B(λ),
which depend on ρ, control the complexity of fH.
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How is the proof done?

Define fH as the argument of the infimum (i.e., assume it is attained).
Then

E
[
f λ`z

]
− E [fH] ≤ A(λ) + S1(λ, z) + S2(λ, z)

where:
A(λ) := E(f λ)− E(fH), and f λ is the population regularized solution
(A(λ) is bias term)

S1(λ, z) =
∥∥∥
√

T (Tx + λ)−1(gz − TxfH)
∥∥∥

2

H
, converges via bound

under noise assumption on ρ(y |x).

S2(λ, z) =
∥∥∥
√

T (Tx + λ)−1(T − Tx)(f λ − fH)
∥∥∥

2

H
, converges since we

can prove mean and variance requirement for bound.
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Why “optimal”?

When Y is finite dimensional, the upper bound is matched by a minimax
lower rate: the “best you can do”:
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of fρ, usually defined for regression in Sobolev spaces (see [11],[30],[17],[5],[9] and
references therein).

Assuming ρ in a suitably small prior P, it is possible to study the uniform con-
vergence properties of learning algorithms. A natural way to do that is considering
the confidence function (see [10], [29])

inf
f�

sup
ρ∈P

Pz∼ρ�

�
E [f �

z ] − inf
f∈H

E [f ] > �

�
� ∈ N, � > 0,

where the infimum is over all the mappings f� : Z� → H. The learning algorithms
{f�}�∈N attaining the minimization are optimal over P in the minimax sense. The
main purpose of this paper (accomplished by Theorems 1 and 2) is showing that,
for any P in the considered family of priors, the regularized least-squared algorithm
(with a suitable choice of the regularization parameter) shares the asymptotic con-
vergence properties of the optimal algorithms.

Let us now introduce the regularized least-squares algorithm [33], [22], [6], [37].
In this framework the hypothesis space H is a given Hilbert space of functions
f : X → Y and, for any λ > 0 and z ∈ Z�, the RLS estimator fλ

z is defined as the
solution of the minimizing problem

min
f∈H

{1

�

��

i=1

�f(xi) − yi�2
Y + λ �f�2

H}.

In the following the regularization parameter λ = λ� is some function of the number
of examples �.

The first result of the paper is a bound on the upper rate of convergence for the
RLS algorithm with a suitable choice of λ�, under the assumption ρ ∈ P. That is,
we prove the existence of a sequence (a�)�≥1 such that

(1) lim
τ→∞

lim sup
�→∞

sup
ρ∈P

Pz∼ρ�

�
E [fλ�

z ] − inf
f∈H

E [f ] > τa�

�
= 0.

More precisely, Theorem 1 shows that there is a choice λ = λ� such that the rate

of convergence is a� = �−
bc

bc+1 , where 1 < c ≤ 2 is a parameter related to the
complexity of fρ and b > 1 is a parameter related to the effective dimension of H.

The second result shows that this rate is optimal if Y is finite dimensional.
Following the analysis presented in [17], we formulate this problem in the framework
of minimax lower rates. More precisely, a minimax lower rate of convergence for
the class P is a sequence (a�)�≥1 of positive numbers such that

(2) lim
τ→0

lim inf
�→+∞

inf
f�

sup
ρ∈P

Pz∼ρ�

�
E [f �

z ] − inf
f∈H

E [f ] > τa�

�
> 0,

where the infimum is over all the mappings f� : Z� → H. The definition of lower
and upper rates are given with respect to the convergence in probability as in [30]
and coherently with the optimization problem inherent to the definition of confi-
dence function. On the contrary, in [17] convergence in expectation was considered.
Clearly, an upper rate in expectation induces an upper rate in probability and a
lower rate in probability induces a lower rate in expectation.
The choice of the parameter λ = λ� is optimal over the prior P if it is possible to
find a minimax lower rate (a�)�≥1 which is also an upper rate for the algorithm fλ�

z .
Theorem 2 shows the optimality for the choice of λ� given by Theorem 1.Caponnetto, De Vito (Arthur Gretton’s notes)Optimal Rates for Regularized Least-Squares AlgorithmFebruary 18, 2013 15 / 18



Boundedness

Definition (Operator norm)

The operator norm of a linear operator A : F → G is defined as

‖A‖ = sup
f ∈F

‖Af ‖G
‖f ‖F

If ‖A‖ <∞, A is called a bounded linear operator.

‖A‖ is the smallest number λ such that the inequality ‖Af ‖G ≤ λ ‖f ‖F
holds for every f ∈ F .

bounded operator 6= bounded function
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Generalization of the parallelogram law

The following is a generalization of the parallelogram law:

‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x + y + z‖2 = ‖x + y‖2 + ‖y + z‖2 + ‖z + x‖2 (1)

Then apply ‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2 and the parallelogram relation for
the remaining two norms on the left, to get

‖x‖2 + ‖y‖2 + ‖z‖2 + ‖x + y + z‖2 ≤ 4‖x‖2 + 4‖y‖2 + 4‖z‖2

and hence
‖x + y + z‖2 ≤ 3

(
‖x‖2 + ‖y‖2 + ‖z‖2

)
.
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Proof: generalization of parallelogram law

To now prove (1): start with the standard parallelogram identity,

‖x + y‖2 − ‖x‖2 = ‖y‖2 + 2〈x , y〉.

Then defining x4 = x1,

3∑

i=1

‖xi + xi+1‖2 −
3∑

i=1

‖xi‖2 =
3∑

i=1

‖xi‖2 +
3∑

i=1

2〈xi , xi+1〉

=

∥∥∥∥∥
3∑

i=1

xi

∥∥∥∥∥

2
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