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Summary

What the paper does:
We learn:

A generative model G that maps (decodes) from a fixed distribution
PZ on a latent space Z to the space of observations X .

The model minimises approximate Wasserstein loss to data distribution
PX

An approximate Wasserstein loss for any distance measure
the loss is specified via a learned encoder

Why interesting in theory
A learnable estimate of the Wasserstein distance

Why interesting in practice
Idea is similar to variational autoencoder, but with arguably more
reasonable latent space behaviour
Can define non-adversarial learning and still get good samples
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The setting

“True” data distribution PX

Latent variable model PG specified by a prior PZ on latent codes
z ∈ Z

Generative model PG (Y |Z ).

Train model PG by minimizing optimal transport distance

Wc(PX ,PG ) = inf
Γ∈P(X∼PX ,Y∼PG )

E(X ,Y )∼Γ[c(X ,Y )]

P(X ∼ PX ,Y ∼ PG ) are distributions with marginals PX ,PG

In general, caligraphic P is set of distributions, upper case P is a
particular distribution.
In their experiments, authors use the square loss,

c(x , y) = ‖x − y‖22.
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Detail: the decoder

The generation procedure: first sample from P(Z ) then generate Y |Z using

pG (y) =

∫
Z
pG (y |z)p(z)dz .

Assume PG (Y |Z ) is deterministic, so G = : Z → X is a function.
A simple random decoder will be considered later.
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The encoder and the O.T. loss

Given we have the deterministic generator/decoder.
Theorem: we have the equivalence:

Wc(PX ,PG ) = inf
Γ∈P(X∼PX ,Y∼PG )

E(X ,Y )∼Γ[c(X ,Y )]

= inf
QZ |X : QZ=PZ

EPX
EQ(Z |X )[c(X ,G (Z )]

where Q(Z |X ) is the encoder, and we have restricted the marginal

Q(Z ) :=

∫
Q(Z |x)P(x)dx

to be equal to P(Z ).

Note: the coupling Γ between X and Y is replaced by coupling
Q(Z |X ) to the random Z , since from Z to Y is a deterministic
mapping. This only makes sense if Q(Z ) matches P(Z ), which means
it gives the right marginal over Y .
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Proof of the theorem

Our joint probability families:
P(PX ,PG ) are joint distributions with marginals PX ,PG .

Likweise: P(PX ,PZ )

PXYZ : joint distributions such that X ∼ PX ,
(Y ,Z ) ∼ PGZ := P(Z )PG (Y |Z ), and (Y⊥X )|Z . I.e. all joint
distributions with the correct generator, and no connection between X
and Y besides the code vector.

This represents a subset of the family of allowable couplings Γ between
X and Y : both of the marginals are correct, but coupling can only
happen via Z .

The marginals of the above distribution are PXY ⊆ P(PX ,PG ), i.e.
PXY are the members of P(PX ,PG ) where Z separates X ,Y and
PG (Y |Z ) generates Y .
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Proof of the theorem (continued)

We start with

Wc(PX ,PG ) ≤W †
c (PX ,PG ) := inf

P∈PXY

EXY [c(X ,Y )]

since we are taking an infimum over the smaller family PXY ⊆ P(PX ,PG ).
But when is the upper bound tight?

Answer: it is tight when Y = G (Z ) (deterministic).
Proof: If Y is a deterministic function of Z in the family P(PX ,PG ), then
Z always separates X from Y :

E [IY∈A|X ,Z ] = E [IY∈A|Z ] ,

so PXY = P(PX ,PG ).
Note: it is always true that PXZ = P(PX ,PZ ).
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Proof of the theorem (continued)

Finally,

W †
c (PX ,PG ) := inf

P∈PXY

EXY [c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)EY∼PG (Y |Z)[c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)[c(X ,G (Z ))]

=: inf
P∈PXZ

EXZ [c(X ,G (Z ))]

and we are done.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf (Arthur Gretton’s notes)Wassertein autoencoders November 1, 2018 8 / 15



Proof of the theorem (continued)

Finally,

W †
c (PX ,PG ) := inf

P∈PXY

EXY [c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)EY∼PG (Y |Z)[c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)[c(X ,G (Z ))]

=: inf
P∈PXZ

EXZ [c(X ,G (Z ))]

and we are done.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf (Arthur Gretton’s notes)Wassertein autoencoders November 1, 2018 8 / 15



Proof of the theorem (continued)

Finally,

W †
c (PX ,PG ) := inf

P∈PXY

EXY [c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)EY∼PG (Y |Z)[c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)[c(X ,G (Z ))]

=: inf
P∈PXZ

EXZ [c(X ,G (Z ))]

and we are done.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf (Arthur Gretton’s notes)Wassertein autoencoders November 1, 2018 8 / 15



Proof of the theorem (continued)

Finally,

W †
c (PX ,PG ) := inf

P∈PXY

EXY [c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)EY∼PG (Y |Z)[c(X ,Y )]

= inf
P∈PXYZ

EPZ
EX∼P(X |Z)[c(X ,G (Z ))]

=: inf
P∈PXZ

EXZ [c(X ,G (Z ))]

and we are done.

Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf (Arthur Gretton’s notes)Wassertein autoencoders November 1, 2018 8 / 15



The relaxed OT loss

Rather than requiring the encoder to exacly match P(Z ), we just
approximately match P(Z ). This gives the main result:

DWAE (PX ,PG ) = inf
Q(Z |X )∈Q

EPX
EQ(Z |X )c[X ,G (Z )] + λDZ (QZ ,PZ ),

where:
Q is the set of encoders that we optimize over
DZ (QZ ,PZ ) is a divergence between the marginal QZ and the target
P(Z )

We can use non-random encoders: this just amounts to a particular
choice in Γ.
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The algorithm (MMD version)

The code distribution is P(z) = N (0, σ2
z Id). The algorithm with MMD is:
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The algorithm (version we don’t talk about)

The code is P(z) = N (0, σ2
z Id). Algorithm with learned divergence on Z :
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How is this different to a variational autoencoder?

Variational autoencoder: requires Q(Z |X = x) to be close to P(Z ) for
each example x : this pulls all representations towards the same “prior”.
Wasserstein autoencoder: requires only the marginal distributions on
the latents to match, Q(Z ) =

∫
Q(Z |X )dPX to match P(Z )
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What if decoder is random?

For random decoders PG (X |Z ), then the bound may no longer be tight.
Assuming c(x , y) = ‖x − y‖22 and
PG (Y |Z = z) ∼ N (G (z), diag([σ2

1, . . . , σ
2
d ])). Then

Wc(PX ,PG ) ≤W †
c (PX ,PG ) =

d∑
i=1

σ2
i + inf

P∈PXZ

EXZ‖X − G (Z )‖22

Proof: first, recall

W †
c (PX ,PG ) = inf

P∈PXYZ

EPZ
EX∼P(X |Z)EY∼PG (Y |Z)[‖X − Y ‖22]

Next

EY∼PG (Y |Z)‖X − Y ‖22
= EY∼PG (Y |Z)‖X − G (Y ) + G (Y )− Y ‖22
= ‖X − G (Z )‖22 + EY∼P(Y |Z)‖G (Z )− Y ‖22.
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Why should the encoder be random?

“On the latent space of Wasserstein auto-encoders”, Rubenstein,
Schoelkopf, Tolstikhin.
In this case, input variability is one dimensional, latent space dimension is 2.
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You should volunteer for MLSS!

MLSS will take place at Gatsby next July 15-26
If you help (eg selecting students, registering when they arrive) you
get to attend for free!
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