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Summary

What the paper does:
We learn:

@ A generative model G that maps (decodes) from a fixed distribution
P~ on a latent space Z to the space of observations X.

e The model minimises approximate Wasserstein loss to data distribution
Px

@ An approximate Wasserstein loss for any distance measure
o the loss is specified via a learned encoder

Why interesting in theory
@ A learnable estimate of the Wasserstein distance
Why interesting in practice

@ lIdea is similar to variational autoencoder, but with arguably more
reasonable latent space behaviour

e Can define non-adversarial learning and still get good samples
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|
The setting

@ "“True” data distribution Px

@ Latent variable model P¢ specified by a prior Pz on latent codes
zeZ

o Generative model Ps(Y|Z).
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|
The setting

@ "“True” data distribution Px

@ Latent variable model P¢ specified by a prior Pz on latent codes
zeZ

o Generative model Ps(Y|Z).

@ Train model Ps by minimizing optimal transport distance

We(Px, Pg) = inf E, -~ X, Y
(Px, Pg) repx ypoy EXY) rlc(X, Y)]

o P(X ~ Px,Y ~ Pg) are distributions with marginals Px, P¢

e In general, caligraphic P is set of distributions, upper case P is a
particular distribution.

e In their experiments, authors use the square loss,

c(x,y) = lIx = yl3.
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N
Detail: the decoder

The generation procedure: first sample from P(Z) then generate Y|Z using

pely) = /Z pe(y|2)p(2)dz.

Assume Pg(Y|Z) is deterministic, so G =: Z — X is a function.
A simple random decoder will be considered later.
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N
The encoder and the O.T. loss

Given we have the deterministic generator/decoder.
Theorem: we have the equivalence:
W:(Px, Pg) = inf E X, Y
«(Px, Pg) L LV X, v)~rle(X; Y)]
= inf Ep, E c(X,G(Z
Qe "y EP azx)le(X, 6(2)]

where Q(Z|X) is the encoder, and we have restricted the marginal
Q(2) = / Q(Z]x)P(x)dx

to be equal to P(Z2).
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N
The encoder and the O.T. loss

Given we have the deterministic generator/decoder.
Theorem: we have the equivalence:
W:(Px, Pg) = inf E X, Y
«(Px, Pg) L LV X, v)~rle(X; Y)]
= inf Ep, E c(X,G(Z
Qe "y EP azx)le(X, 6(2)]

where Q(Z|X) is the encoder, and we have restricted the marginal
Q(2) = / Q(Z]x)P(x)dx

to be equal to P(Z2).

@ Note: the coupling I between X and Y is replaced by coupling
Q(Z|X) to the random Z, since from Z to Y is a deterministic
mapping. This only makes sense if Q(Z) matches P(Z), which means
it gives the right marginal over Y.
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Proof of the theorem

Our joint probability families:
e P(Px, Pg) are joint distributions with marginals Px, Pg.
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Our joint probability families:
e P(Px, Pg) are joint distributions with marginals Px, Pg.
o Likweise: P(Px,Pz)
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Proof of the theorem

Our joint probability families:
e P(Px, Pg) are joint distributions with marginals Px, Pg.
o Likweise: P(Px,Pz)
° . joint distributions such that X ~ Py,
(Y,Z) ~ Pz := P(Z)Pg(Y|Z), and (Y LX)|Z. l.e. all joint
distributions with the correct generator, and no connection between X
and Y besides the code vector.

o This represents a subset of the family of allowable couplings I' between
X and Y: both of the marginals are correct, but coupling can only
happen via Z.
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Proof of the theorem

Our joint probability families:
e P(Px, Pg) are joint distributions with marginals Px, Pg.
o Likweise: P(Px,Pz)
° . joint distributions such that X ~ Py,
(Y,Z) ~ Pz := P(Z)Pg(Y|Z), and (Y LX)|Z. l.e. all joint
distributions with the correct generator, and no connection between X
and Y besides the code vector.

o This represents a subset of the family of allowable couplings I' between
X and Y: both of the marginals are correct, but coupling can only
happen via Z.
@ The marginals of the above distribution are C P(Px, Pg), i.e.
are the members of P(Px, Pg) where Z separates X, Y and
Ps(Y|Z) generates Y.
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N
Proof of the theorem (continued)
We start with
W.(Px, Pg) < Wi(Px, Pg) := Pinf Exy[c(X, Y)]
S

since we are taking an infimum over the smaller family C P(Px, Pg).
But when is the upper bound tight?

Ilya Tolstikhin, Olivier Bousquet, Sylvain Wassertein autoencoders November 1, 2018 7/ 15



-
Proof of the theorem (continued)
We start with
W.(Px, Pg) < Wi(Px, Pg) := oinf  Exy[e(X, V)]
€
since we are taking an infimum over the smaller family C P(Px, Pg).

But when is the upper bound tight?
Answer: it is tight when Y = G(Z) (deterministic).
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Proof of the theorem (continued)

We start with
W.(Px, Pg) < Wi(Px, Pg) := Pinf Exy[c(X, Y)]
S

since we are taking an infimum over the smaller family C P(Px, Pg).
But when is the upper bound tight?

Answer: it is tight when Y = G(Z) (deterministic).

Proof: If Y is a deterministic function of Z in the family P(Px, P¢), then
Z always separates X from Y

E[lyealX, Z] = E [lyealZ],

SO :P(Px,PG).
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Proof of the theorem (continued)

We start with
W.(Px, Pg) < Wi(Px, Pg) := Pinf Exy[c(X, Y)]
S

since we are taking an infimum over the smaller family C P(Px, Pg).
But when is the upper bound tight?

Answer: it is tight when Y = G(Z) (deterministic).

Proof: If Y is a deterministic function of Z in the family P(Px, P¢), then
Z always separates X from Y

E[lyealX, Z] = E [lyealZ],

SO = P(Px, PG).
Note: it is always true that = P(Px, Pz).
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Proof of the theorem (continued)

Finally,

Wi(Px, Pe) = inf Exv[e(X,Y)]
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Proof of the theorem (continued)

Finally,
WE(Px, Pc) = inf Exyle(X,Y)]

= pdnf  EpzEx~p(x|z)Ey~pe(viz) (X, Y]
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Proof of the theorem (continued)

Finally,
WE(Px, Pc) = inf Exyle(X,Y)]

= pdnf  EpzEx~p(x|z)Ey~pe(viz) (X, Y]

= pnf  Ep, Ex~p(x|z)le(X; G(2))]
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Proof of the theorem (continued)

Finally,
Wi (Px, Pg) := pinf

= inf
Pc

= inf
Pe

=: inf
Pe

and we are done.
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Exy[c(X, Y)]
Ep,Ex~p(x1z)Ev~pc(v|z)lc(X, Y)]
Ep, Ex~p(x|z)lc(X, G(Z))]
Exz[c(X, G(2))]
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The relaxed OT loss

Rather than requiring the encoder to exacly match P(Z), we just
approximately match P(Z). This gives the main result:

D Px, Pg) = inf  Ep E c[X,G(Z2)] + ADz(Qz, Pz),
wae(Px, Pg) o2 e EPxEatzix) [X, G(2)] 7(Qz, Pz)
where:
@ Q is the set of encoders that we optimize over

e Dz(Qz,Pz) is a divergence between the marginal Q7 and the target

P(2)
@ We can use non-random encoders: this just amounts to a particular
choice in T
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|
The algorithm (MMD version)

The code distribution is P(z) = N(0,02l4). The algorithm with MMD is:

Algorithm 2 Wasserstein Auto-Encoder
with MMD-based penalty (WAE-MMD).
Require: Regularization coefficient A > 0,
characteristic positive-definite kernel k
Initialize the parameters of the encoder Q,
decoder 7y, and latent diseriminator D,
while (¢, #) not converged do geni?z;zsaiﬁs-ng
T} the training set
Sample {zy, 7%, } from the prior Pz
Sample z; from Qu(Z|xi) fori=1,....n
Update Q4 and Gy by descending:

;Z i Gal t ”[” Zk[ 2,2
ey 2 kG ;—f_,z;-[:..f,)
&3

au

Sample {x,...,

end while
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The algorithm (version we don't talk about)

The code is P(z) = N(0,021). Algorithm with learned divergence on Z:

Algorithm 1 Wasserstein Auto-Encoder
with GAN-based penalty (WAE-GAN).

Require: Regularization coefficient A > 0,

Initialize the parameters of the encoder Q.
decoder Gy, and latent discriminator D.,.

while (&, #) not converged do

Sample {zy,...,2,} from the training set
Sample {z1,..., z.} from the prior Pz

Sample z; from Q4(Z|x;) for i=1,....n

Update D, by ascending:
iZ:lll:.', D.(z) + log(1 ”._[.:{))
n
i=1
Update @, and Gy by descending:
Ly (2, G2 A-log D.( 2
:Ell-'.- vo(Z)) = A log DL (%)
i=1

end while
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How is this different to a variational autoencoder?

e Variational autoencoder: requires Q(Z|X = x) to be close to P(Z) for
each example x: this pulls all representations towards the same “prior”.

@ Wasserstein autoencoder: requires only the marginal distributions on
the latents to match, Q(Z) = [ Q(Z|X)dPx to match P(Z)
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What if decoder is random?

For random decoders Pg(X|Z), then the bound may no longer be tight.
Assuming c(x,y) = ||x — y|3 and
Pe(Y|Z = z) ~ N(G(z),diag([03,...,02])). Then
d
t _ 2 - _ 2
We(Px, Pe) < Wi(Px, Pg) = ;0; +pinf Exz| X = 6(2)]
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What if decoder is random?

For random decoders Pg(X|Z), then the bound may no longer be tight.
Assuming c(x,y) = ||x — y|3 and
Pe(Y|Z = z) ~ N(G(z),diag([03,...,02])). Then
d
t _ 2 - _ 2
We(Px, Pe) < Wi(Px, Pg) = ;0; +pinf Exz| X = 6(2)]

Proof: first, recall

Wl (Px, Pg) = Pei;;fw Ep, Ex~p(x12)Ev~pe(vi2)[IX = YI[3]

Ilya Tolstikhin, Olivier Bousquet, Sylvain Wassertein autoencoders November 1, 2018 13 /15



N
What if decoder is random?

For random decoders Pg(X|Z), then the bound may no longer be tight.
Assuming c(x,y) = ||x — y|3 and
Pe(Y|Z = z) ~ N(G(z),diag([03,...,02])). Then
d
t _ 2 - _ 2
We(Px, Pe) < Wi(Px, Pg) = ;0; +pinf Exz| X = 6(2)]

Proof: first, recall

Wl (Px, Pg) = Pei;;fw Ep, Ex~p(x12)Ev~pe(vi2)[IX = YI[3]

Next

Eype(vinyIX = Y5
= Eype(v|2)lX = G(Y) + G(Y) = Y3
=X = G(2)|5+ Ev~p(vi)| G(Z) = Y3
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|
Why should the encoder be random?

“On the latent space of Wasserstein auto-encoders”’, Rubenstein,
Schoelkopf, Tolstikhin.
In this case, input variability is one dimensional, latent space dimension is 2.

(a) What MMD sees (b) What the encoder does
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Why should the encoder be random?

“On the latent space of Wasserstein auto-encoders”’, Rubenstein,
Schoelkopf, Tolstikhin.
In this case, input variability is one dimensional, latent space dimension is 2.

Random encoder
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You should volunteer for MLSS!

@ MLSS will take place at Gatsby next July 15-26

o If you help (eg selecting students, registering when they arrive) you
get to attend for free!
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