
Assignment 4

Probabilistic and Unsupervised Learning

Maneesh Sahani & Yee Whye Teh

Due: Mon Dec 3, 2007

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS department.
Please hand in all assignments at the beginning of lecture on the due date to the lecturer. Late assignments
will be penalised. If you are unable to come to class, you can also hand in assignments to Rachel Howes
in the Alexandra House 4th floor reception.

Please attempt the first questions before the bonus ones. This is a programming assignment and might
require more time to understand the accompanying code and to debug, so please START EARLY.

1. [30 points] Deriving Gibbs Sampling for LDA.

In this question we derive two Gibbs sampling algorithms for latent Dirichlet allocation (LDA).
Recall LDA is a topic model—multiple mixture models with shared components—with the following
conditional probabilities:

θd|α ∼ Dirichlet(α, . . . , α) (1)
φk|β ∼ Dirichlet(β, . . . , β) (2)
zid|θd ∼ Discrete(θd) (3)

xid|zid,φzid
∼ Discrete(φzid

) (4)
(5)

Assume our data consists of D documents, a vocabulary of size W , and we model with K topics.
Let Adk =

∑
i δ(zid = k) be the number of zid variables taking on value k in document d, and

Bkw =
∑

d

∑
i δ(xid = w)δ(zid = k) be the number of times word w is assigned to topic k. Let Nd

be the total number of words in document d and let Mk =
∑

w Bkw be the total number of words
assigned to topic k.

(a) Write down the joint probability over the observed data and latent variables, expressing the
joint probability in terms of the counts Nd, Mk, Adk, and Bkw. [4 points]

(b) Derive the Gibbs sampling updates for all the latent variables and parameters. [10 points]

(c) Integrate out the parameters θd’s and φk’s from the joint probability in (a), resulting in a joint
probability over only the zid topic assignment variables and xid observed variables. Again this
expression should relate to zid’s and xid’s only through the counts Nd, Mk, Adk, and Bkw. [6
points]

(d) Derive the Gibbs sampling updates for zid with all parameters integrated out. This is called
collapsed Gibbs sampling. You will need the the following identity of the Gamma function:
Γ(1 + x) = xΓ(x) for x > 0. [10 points]

2. [70 points] Implementing Gibbs sampling for LDA. Take a look at the accompanying
code, which sets up a framework in which you will implement both the standard and collapsed Gibbs
sampling inference for LDA. Read the README which lays out the MATLAB variables used.



(a) Implement both standard and collapsed Gibbs sampline updates, and the log joint proba-
bilities in question 1(a), 1(c) above. The files you need to edit are stdgibbs logjoint,
stdgibbs update, colgibbs logjoint,colgibbs update. Debug your code by running toyexample.
Show sample plots produced by toyexample, and attach and document the MATLAB code that
you wrote. [10 points each]

(b) Based upon the plots of log predictive and joint probabilities produced by toyexample, how
many iterations do you think are required for burn-in? Discarding the burn-in iterations, com-
pute and plot the autocorrelations of the log predictive and joint probabilities for both Gibbs
samplers. You will need to run toyexample for a larger number of iterations to reduce the noise
in the autocorrelation. Based upon the autocorrelations how many samples do you think will
be need to have a representative set of samples from the posterior? Describe what you did and
justify your answers with one or two sentences. [10 points]

(c) Based on the computed autocorrelations, which of the two Gibbs samplers do you think converge
faster, or do they converge at about the same rate? If they differ, why do you think this might
be the case? Justify your answers. [10 points]

(d) Try varying α, β and K. What effects do these have on the posterior and predictive performance
of the model? Justify your answers. [10 points]

3. [Bonus: 15 points] Predictive probabilities.

(a) The functions provided for computing log predictive probabilities only compute log predictive
probabilities based on the current sample, instead of averaging across samples. What are the
mean log predictive probabilities of the two Gibbs samplers (discarding burn-in)? Which one is
higher? Why do you think this is the case? How can we change the code of the lower one to
mitigate this problem? Describe what you did and attach code? [10 points]

(b) Edit the code for computing log predictive probabilities so that they compute the log predictive
probabilities averaged over samples properly. Are the computed log predictive probabilites the
same now? [5 points]

4. [Bonus: 25 points] Topic modelling of NIPS papers. Now that we have code for LDA, we
can try our hands on finding the topics at a major machine learning conference (NIPS)!

In the provided code there is a file nips.data which contains preprocessed data. The vocabulary is
given in nips.vocab.

(a) The data in nips.data is probably too big so that our MATLAB implementation will be too
slow. We will try to reduce the data set to a more tractable size, by removing words from the
vocabulary. Come up with a metric for how informative/relevant/topical a vocabulary word
is. You may want to experiment and try multiple metrics, and make sure that keywords like
“Bayesian”, “graphical”, “Gaussian”, “support”, “vector”, “kernel”, “representation”, “regres-
sion”, “classification” etc have high metric. Report on your experiences, and use your metric to
prune the data set to just the top few hundred words (say 500, or lower if the implementation
is still too slow). You may find it useful to read up on tf-idf on wikipedia. [10 points]

(b) Now run LDA on the reduced NIPS data, using one of the Gibbs samplers you have just written.
You will need to experiment with various settings of α, β and K until the topics discovered looks
“reasonable”. Describe the topics you found. How do the topics change (qualitatively) as α, β
and K are varied? [15 points]


