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Mixtures of Gaussians

Log-likelihood:

Data: X ={x;...xy}
Latent process:

5 1S Disc|r]
Component distributions:
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Marginal distribution:
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EM for MoGs

e Evaluate responsibilities
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The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts from
arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

e Useful in models where learning would be easy if hidden variables were, in fact, observed
(e.g. MoGs).

e Decomposes difficult problems into series of tractable steps.
e No learning rate.
e Framework lends itself to principled approximations.



Jensen’s Inequality

log(a x, + (1) x,)|
a log(x,) + (1-a) log(x,)|

Fora; > 0,> «a; = 1andany {x; > 0}

log <Z Ozzwz) > Z a; log(;)

Equality if and only if o; = 1 for some ¢ (and therefore all others are 0).



The Free Energy for a Latent Variable Model
Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
((6) = log P(X16) = 1o | P(Y,X|6)dy

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

_ Py, X10) 5 PV, X|0) . def
((0) —1og/q(37) ) dy > /q(y)l 5 o) 4y < Flq,0).

/ ) log~ %’(’;j’e) 1y — / a(V)log P(Y, X19) dY / log ()

Now,

:/q(y)logP(y,X ) dY + Hlq|

where H|q| is the entropy of ¢())).
So:
F(gq,0) = (log P(¥, X10)) (3 + Hld]



The E and M steps of EM

The lower bound on the log likelihood is given by:
F(q,0) = (log P(Y, X10)) . + Hldl,

EM alternates between:
E step: optimize F(q, ) wrt distribution over hidden variables holding parameters fixed:

q(k)(y) ;= argmax ]—"(q(y% 9<k_1>)'
9(Y)

M step: maximize F(q, ) wrt parameters holding hidden distribution fixed:

9" .= argmax F(q'"()),0) = argmax (log P(Y, X10)) w)y)
0 0

The second equality comes from the fact that the entropy of ¢()’) does not depend directly
on 6.



EM as Coordinate Ascent in F
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The E Step

The free energy can be re-written

Py, X|0)
)
P(Y|X,60)P(X|6)

/ )log q(Y)
/ )log P(X|0) dY + /q(y) log
((0) DPY]X,0)]

The second term is the Kullback-Leibler divergence.

Flg, 0)= / 1Y) log

dy

PY|X,0)
q(Y)

dy

This means that, for fixed 6, F is bounded above by ¢, and achieves that bound when

KL[g(V)[[P(Y|X,0)] = 0.
But KL |q||p] is zero if and only if ¢ = p. So, the E step simply sets

(") =Pylx,0"Y)

and, after an E step, the free energy equals the likelihood.



The KL |¢(x)||p(x)] is non-negative and zero iff Vz : p(x) = q(x)

First let's consider discrete distributions; the Kullback-Liebler divergence is:
QHP Z q; log N

To find the distribution ¢ which minimizes KL|q||p] we add a Lagrange multiplier to enforce
the normalization constraint:

EdffKLqu —I—)\l—ZqZ Zqzlog —I—)\l—ZqZ

We then take partial derivatives and set to zero:

oFr )
5 logq; —logp; +1—A=0= ¢, = p;exp(A — 1)
qi
aE >:>QZ pz
o 1—ZQZ'ZOZ>Z%‘:1
7 1 J



The KL |¢(x)||p(x)] is non-negative and zero iff Vz : p(x) = q(x)

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

OPE 1 O’FE
=— >0, = 0,
09;0q; g ﬁqz-(“?qj

showing that ¢; = p; is a genuine minimum.
At the minimum is it easily verified that KL|p||p] = 0.

A similar proof holds for KL|-||-] between continuous densities, the derivatives being substi-
tuted by functional derivatives.



Coordinate Ascent in / (Demo)

One parameter mixture:

s ~ Bernoulli|r]

rls=0~N[-1,1] z|s=1~N]1,1]

and one data point z; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].
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EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

e The E step brings the free energy to the likelihood.
e The M-step maximises the free energy wrt 6.
e F < [ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that (%) £ 9~ iff F increases, then the overall EM iteration
will step to a new value of # iff the likelihood increases.



Fixed Points of EM are Stationary Points in /
Let a fixed point of EM occur with parameter 6*. Then:

0

76" =0

e*

1ng<y X | (9)> P(Y|X,6%)

Now, ((0)= log P(X|0)= (log P(X10)) p(y|x o)

(BT 0

= (log P(V, X|0)) py|x g+) — {log P(V| X, 0)) py1x )

SO, d d d

The second term is 0 at 6* if the derivative exists (minimum of KL|[-||-]), and thus:

d d

log P( |X, ‘9>>P()/\X,0*)

So, EM converges to a stationary point of £(6).



Maxima in F correspond to maxima in /¢

Let 8% now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt 6 again we find

d? d? d?

dmé(@) d62<logP(y X|0)) y‘Xe*)_dHQGOgP(MX 0))p POYIX.0%)

The first term on the right is negative (a maximum) and the second term is positive (a mini-
mum). Thus the curvature of the likelihood is negative and

0™ is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

k k
T 1
p(x|0) = Zp(s = m|0)p(z|s =m,0) x Z —eXPy ﬁ(az — )’}
m=1 m=1 " m

where 6 is the collection of parameters: means p,,, variances ag,L and mixing proportions
Tm = p(s = ml@).

The hidden variable s; indicates which component observation x; belongs to.
The E-step computes the posterior for s; given the current parameters:

q(si)= p(si|zi, 0) o< p(i|si, O)p(s:|0)
e m 1 —
Tim o q(s; = m)ox Tm exp { — ——(z; — ,um)z} (responsibilities)
T 202

with the normalization such that > r;,, = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E = (logp(z,5]0)) ) = Y _ q(s)loglp(s|6) p(x]s,6)]
1

= Z Tim log Tm — log oy, — m(% - Mm)Q]-

1,m

Optimization is done by setting the partial derivatives of £ to zero:

RCLCR o P C B 3 P DL

5’,me - ' 20'7271 B Z@Tz’m )
OF 1 t— Mm . i Tim\ Ly — Um 2
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where ) is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

K

Linear generative model: x; = Z Nar yi + €4

k=1
e ;. are independent A/ (0, 1) Gaussian factors

e ¢, are independent A/ (0, V,,;) Gaussian noise
o K\ <D

So, x is Gaussian with: p(x) = /p(y)p(x|y)dy = N(0,AN" + 1)
where A isa D x K matrix, and WV is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

The model for x:

p(x|6) = / ply|6)p(xly, 0)dy = N(0, AT + )

Model parameters: 6 = {A, V}.

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: ¢,(y) = p(y|x,, 0;).

M step: Find the 6,.; that maximises F(q, 0):

Flg.0) = 3 / 4u(y) [log p(y16) + log p(xuly, 6) — log a(y)] dy

= 3" [ aly) losnyl6) + logpix,ly. 6)) dy +



The E step for Factor Analysis

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: g,(y) = p(y|xs, 0) = p(y, xn|0)/p(x5|0)

Tactic: write p(y, x,,|#), consider x,, to be fixed. What is this as a function of y?

p(y; %n) = p(y)p(Xnly)
= (2m)72 eXp{—%yTy} 2|72 eXp{—%(xn — Ay) U (x, — Ay)}
= ¢ X exp{—%[yTy +(xo — Ay) U (x, — Ay)]}
— ¢ x exp{_%[ﬂ T+ AU A )y —2y 'A%, ]}
= ¢ % exp{—%[yTﬁly =2y 'S 4 T )}

SoY = (I +AN U IAN) =T —3Aand p= XA U 1x, = Bx,. Where 3 = XA UL,
Note that 1 is a linear function of x,, and > does not depend on x,,.



The M step for Factor Analysis

M step: Find 6,1 maximising F = > [ g.(y) [logp(y|0) + log p(x,|y, )] dy + ¢

o p(y16)+ log plx, [y 0) = ¢ — 2y Ty — 1o [U] — 2 (x, — Ay) ¥ H(x, — Ay)
=C — %bg W] — %[an\Iflxn — 2%, ' U Ay +y AT U AY]
=C — %k)g || — %[an\If_lxn — 2%, U Ay + Tr [A U Ayy ']
Taking expectations over ¢,(y). ..
=C — %10g W] — %[an\Plxn — 2%, U A, + T AU A (g, + D))

Note that we don’t need to know everything about ¢, just the expectations of y and yy ' under
q (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

N 1
F=e—log|Wl =53 [ 0%, — 2x, U7 Apty + Tr [ATWT A g + 3]

n

Taking derivatives w.r.t. A and U, using mr[AB] = A'" and 8logA|A\ AT

OF ~1 T ~1 T
a—A:\IJ anun — A<N2+Zn:unun =0

n

A= (> xupn") <N S+ umﬂ)

oOF N
T = — — Z X Xn ' — ApinXn ' — Xppin N A Appn |+ Z)AT}
A 1
U=~ ; 0%, = AiXy " — X AT+ Apnpn, ' + AT
U= AZATJri Z(xn — Apin) (% — Apiy) " (squared residuals)
N

Note: we should actually only take derivarives w.r.t. V;; since WV is diagonal.
When >. — 0 these become the equations for linear regression!



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the g¢s.
For example, sparse or online versions of the EM algorithm would compute the posterior

for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



EM for exponential families

Defn: p is in the exponential family for z = (y, x) if it can be written:
p(z]0) = b(z) exp{f "s(z)}/a(0)

where a(0) = [ b(z) exp{0' s(z)}dz

E step: ¢(y) = p(y|x,0)

M step: 6%) := argmax F(q,0)
6

Flq.0) = / a(y) log ply, x|6)dy — H(q)
[ aty)18”5(2) 1oz a(6)]dy ~+ cons

l 0
It is easy to verify that: 0 O§g< ) = F|[s(z)|0]
OF
Therefore, M step solves:  — = I y)[s(z)] — E[s(z)|0] =0



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|0) = Z T N (g, ANy + )

where 7. is the mixing proportion for FA k, ;. is its centre, A; is its “factor loading matrix”,
and W is a common sensor noise model. 0 = {{m, ug, Ak }i=1.. 5, ¥V}
We can think of this model as having two sets of hidden latent variables:

e A discrete indicator variable s,, € {1,... K}

e For each factor analyzer, a continous factor vector y,, ;. € RPk

pxlf) = 3" plsnl®) [ pl31s.:Olptx,ly.5,.6) dy

sp=1

As before, an EM algorithm can be derived for this model:
E step: Infer joint distribution of latent variables, p(y,., s,|Xx, 0)

M step: Maximize F with respect to 6.



Proof of the Matrix Inversion Lemma

(A+XBX")1=AT1 A XB 1+ XTA'X)IxTA™!

Need to prove:
(A7 —A'XB '+ XA X) ' XTA ) (A+XBX ") =1

Expand:

[+ A'XBX" —A ' XB '+ X"A'X)'XT A ' X B+ XA X)) XTA I XBXT
Regroup:

= [+ A X (BXT =B+ XTAX) !XT - (B + XTATIX)TIXTATIXBXT)

= I+ A'X(BX' = (B'"+ X"A'X)"'B'BX" - (BT'+ XTAT'X)"'XTAT'XBX ")

= I+A'X(BX'-(B'+ XA X) (BT + X AT X)BX )
= I+ A'X(BX' —-BX")=1
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