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Learning Model Structure

How many clusters in the data?

What is the intrinsic dimensionality of the data?

Is this input relevant to predicting that output?

What is the order of a dynamical system?

How many states in a hidden Markov model?

How many auditory sources in the input?
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Model complexity and overfitting:
a simple example
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Learning Model Structure
Models labeled by m have parameters θm. Which model is correct?
ML (or MAP) has no good answer: P (D|θML

m ) is always larger for more complex (nested)
models.

Neyman-Pearson hypothesis testing

• For nested models. Starting with simplest model (m = 1), compare (e.g. by likelihood
ratio test) null hypothesis m to alternative m + 1. Continue until m + 1 is rejected.
• Usually only valid asympotically in data number.
• Conservative (N-P hypothesis tests are asymmetric).

Likelihood validation

• Partition data into disjoint training and validation data sets D = Dtr∪Dvld. Choose model
with greatest P (Dvld|θML

m ), with θML
m = argmaxP (Dtr|θ).

• Unbiased, but often high-variance.
• Cross-validation uses multiple partitions and averages likelihoods.

Bayesian model selection

• Choose most likely model: argmaxP (m|D).
• Principled (from a probabilistic viewpoint), but dependent on assumed priors etc.
• Can use posterior probabilities to weight models for combined predictions (no need to

select at all).



Bayesian Treatment of Probabilistic Models: Terminology

A model class m is a set of distributions parameterised by θm, e.g. the set of all possible
mixtures of m Gaussians.

We have a prior over the parameters P (θm|m), and a likelihood of data given parameters
(this might involve integrating out latent variables) P (D|θm,m).
The posterior distribution over parameters is

P (θm|D,m) =
P (D|θm,m)P (θm|m)

P (D|m)
.

The marginal probability of the data under model class m is:

P (D|m) =

∫
Θm

P (D|θm,m)P (θm|m) dθm.

This is also known as the Bayesian evidence for model m.

The ratio of two marginal probabilities (or sometimes its log) is known as the Bayes factor:

P (D|m)

P (D|m′)



The Bayesian Occam’s Razor
The Occam’s Razor principle is, roughly speaking, that one should prefer simpler expla-
nations than more complex explanations. Bayesian inference formalises and automatically
implements the Occam’s Razor principle.

Compare model classes m using their posterior probability given the data:

P (m|D) =
P (D|m)P (m)

P (D)
, P (D|m) =

∫
Θm

P (D|θm,m)P (θm|m) dθm

Interpretation of P (D|m): The probability that randomly selected parameter values from
the model class would generate data set D.

Model classes that are too simple are unlikely to generate the data set.
Model classes that are too complex can generate many possible data sets, so again, they
are unlikely to generate that particular data set at random.

data sets: D

P
(D
|m

)

D0



Bayesian Model Comparison: Occam’s Razor at Work
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Model Evidence

e.g. for quadratic (M=2): y = a0 + a1x + a2x
2 + ε, where ε ∼ N (0, τ ) and θ2 = [a0 a1 a2 τ ]



Conjugate-Exponential Families

Can we compute P (D|m)? . . . . . . Sometimes.

Suppose P (D|θm,m) is a member of the exponential family:

P (D|θm,m) =

N∏
i=1

P (xi|θm,m) =

N∏
i=1

es(xi)
Tθm−A(θm).

If our prior on θm is conjugate:

P (θm|m) = es
T
p θm−npA(θm)/Z(sp, np)

then the joint is in the same family:

P (D,θm|m) = e

(∑
i s(xi)+sp

)T
θm−(N+np)A(θm)/Z(sp, p)

and so:

P (D|m) =

∫
dθm P (D,θm|m) = Z

(∑
is(xi) + sp, N + np

)/
Z(sp, p)

But this is a special case. In general, we need to approximate . . .



Practical Bayesian approaches

• Laplace approximations:

– Makes a Gaussian approximation about the maximum a posteriori parameter estimate.

• Bayesian Information Criterion (BIC)

– an asymptotic approximation.

• Markov chain Monte Carlo methods (MCMC):

– In the limit are guaranteed to converge, but:
– There is often high variance in the estimated integrals.
– Many samples required to ensure accuracy.
– Sometimes hard to assess convergence.

• Variational approximations

– Lower bound on the marginal probabilities.
– Biased estimate.
– Easy and fast, and often better than Laplace or BIC.

This list is not exhaustive. There are a number of other deterministic approximations, includ-
ing those based on, e.g. Bethe approximations and expectation propagation.
We will discuss Laplace and BIC in this lecture, but the rest in second half of course.



Laplace Approximation

We want to find P (D|m) =

∫
P (D,θm|m) dθm.

As data size N grows (relative to number of parameter d), θm becomes more constrained
⇒ P (D,θm|m) ∝ P (θm|D,m) becomes concentrated on MAP mode θ∗m.

Idea: approximate logP (D,θm|m) to second-order around θ∗.

∫
P (D,θm|m)dθm =

∫
elogP (D,θm|m) dθm

=

∫
elogP (D,θ∗m|m)+∇ logP (D,θ∗m|m)·(θm−θ∗m)+1

2(θm−θ∗m)T∇2 logP (D,θ∗|m)(θm−θ∗m) dθm

=

∫
P (D,θ∗m|m)e−

1
2(θm−θ∗m)TA(θm−θ∗m) dθm

= P (D|θ∗m,m)P (θ∗m|m)(2π)
d
2 |A|−

1
2

with A = −∇2 logP (D,θ∗m|m) the negative of the Hessian matrix of logP (D,θ|m) evalu-
ated at θ∗m. Note that we use the fact that the gradient at the mode vanishes.

This is equivalent to approximating the posterior by a Gaussian: an approximation which is
asymptotically correct.



Bayesian Information Criterion (BIC)

BIC can be obtained from the Laplace approximation:

logP (D|m) ≈ logP (θ∗m|m) + logP (D|θ∗m,m) +
d

2
log 2π − 1

2
log |A|

in the large sample limit (N →∞) where N is the number of data points.
A grows as NA0 for some fixed matrix A0, so log |A| → log |NA0| = log(Nd|A0|) =
d logN + log |A0|. Retaining only terms that grow in N we get:

logP (D|m) ≈ logP (D|θ∗m,m)− d

2
logN

Properties:

• Quick and easy to compute.

• It does not depend on the prior.

•We can use the ML estimate of θ instead of the MAP estimate

• It is related to the “Minimum Description Length” (MDL) criterion.

• It assumes that in the large sample limit, all the parameters are well-determined (i.e. the
model is identifiable; otherwise, d should be the number of well-determined parameters).

• Danger: counting parameters can be deceiving!



Hyperparameters and Evidence Optimisation

In some cases, we need to choose between a family of continuously parameterised models.

P (D|η) =

∫
P (D|θ)P (θ|η

↑
hyperparameters

) dθ

This can often be done by gradient ascent in:

• The exact evidence (if tractable).

• Approximated evidence (Laplace, EP, Bethe, . . . )

• Free-energy bound on the evidence (VB)

Another possibility: to place a hyperprior on the hyperparameters η, and obtain samples
from the posterior

P (η|D) =
P (D|η)P (η)

P (D)

using Markov chain Monte Carlo sampling.



Evidence Optimisation in Linear Regression

Consider simple linear regression:

w

xi

yiC

w ∼ N (0, C)

σ2

yi ∼ N (w!xi, σ
2)

i = 1, . . . , N

• Maximize

P (y1 . . . yN |x1 . . . xN , C, σ
2) =

∫
P (y1 . . . yN |x1 . . . xN ,w, σ

2)P (w|C) dw

to find optimal C, σ2.

• Compute the posterior P (w|y1 . . . yN , x1 . . . xN , C, σ2) given these optimal values.



The Evidence for Linear Regression

The posterior on w is normal, with variance Σ = (XX
T

σ2 + C−1)−1 and mean µ = ΣXY T

σ2 .
Note: X is a matrix where columns are input vectors, and Y is a row vector of corresponding
predicted outputs.

The evidence, E(C, σ2) =
∫
P (Y |X,w, σ2)P (w|C) dw, is given by:

E(C, σ2) =

√
|2πΣ|

|2πσ2I| |2πC|
exp

(
−1

2
Y

(
I

σ2
− XTΣX

σ4

)
Y T

)

For optimization, general forms for the gradients are available. If θ is a parameter in C:

∂

∂θ
log E(C, σ2) =

1

2
Tr

[
(C − Σ− µµT)

∂

∂θ
C−1

]
∂

∂σ2
log E(C, σ2) =

1

σ2

(
−N + Tr

[
I − ΣC−1

]
+

1

σ2
(Y − µTX)(Y − µTX)T

)



Automatic Relevance Determination

The standard form of evidence optimization for regression (due to MacKay and Neal [3])
takes C−1 = diag(α) (i.e. wi ∼ N (0, α−1

i )) and then optimizes the precisions {αi}. Setting
the gradients to 0 and solving gives

αnew
i =

1− αiΣii

µ2
i

(σ2)new =
(Y − µTX)(Y − µTX)T

N −
∑

i(1− Σiiαi)

During optimization the αi’s meet one of two fates

αi →∞ ⇒ wi = 0 irrelevant feature i
αi finite ⇒ wi = argmax P (wi | X, Y, αi) relevant feature i

This procedure, Automatic Relevance Determination (ARD), yields sparse solutions that im-
prove on ML regression.

Evidence optimisation is also called maximum marginal likelihood or ML-2 (Type 2 maximum
likelihood).



Linear Regression Revisited

w

xi

yiτ2

w ∼ N (0, τ2I)

σ2

yi ∼ N (w!xi, σ
2)

i = 1, . . . , N

Linear regression predicts output y given input vector x by:

y ∼ N (wTx, σ2)

Posterior over w is Gaussian with covariance Σ=( 1
σ2XX

T + 1
τ2I)−1 and mean µ= 1

σ2ΣXY T

(where X is matrix with columns being input vectors, Y is row vector of outputs).

Given a new input vector x′, the predicted output y′ is (integrating out w):

y′|x′ ∼ N (µTx′, x′
T
Σx′ + σ2)

the additional variance term x′TΣx′ results from the posterior uncertainty in w.



Alternative View of Linear Regression

w

xi

yiτ2

w ∼ N (0, τ2I)

σ2

yi ∼ N (w!xi, σ
2)

i = 1, . . . , N

Integrating out w, the joint distribution of y1, . . . , yN given x1, . . . , xN is Gaussian.
The means and covariances are:

E[yi] = E[wTxi] = 0Txi = 0

E[(yi − 0)2] = E[(xT
i w)(wTxi)] + σ2 = τ 2xT

i xi + σ2

E[(yi − 0)(yj − 0)] = E[(xT
i w)(wTxj)] = τ 2xT

i xj
y1

y2
...
yN


∣∣∣∣∣∣∣∣ x1, . . . , xN ∼ N




0
0
...
0

 ,

τ 2xT

1 x1 + σ2 τ 2xT
1 x2 · · · τ 2xT

1 xN
τ 2xT

2 x1 τ 2xT
2 x2 + σ2 τ 2xT

2 xN
... . . . ...

τ 2xT
Nx1 τ 2xT

Nx2 · · · τ 2xT
NxN + σ2




Y T|X ∼ N (0N , τ
2XTX + σ2IN)



Alternative View of Linear Regression

If we also include the test input vector x′ and test output y′:[
Y T

y′

]∣∣∣∣X, x′ ∼ N ([0N
0

]
,

[
τ 2XTX + σ2I τ 2XTx′

τ 2x′TX τ 2x′Tx′ + σ2

])
Conditioning on the observed output values of Y , the distribution of y′ can be worked out
using standard results of multivariate Gaussian distributions,

y′|Y,X, x′ ∼ N
(

1
σ2x
′TΣXY T, x′TΣx′ + σ2

)
Σ =

(
1
σ2XX

T + 1
τ2I
)−1

The above result is exactly the same as when we computed the posterior for w, then the
predictive distribution over y′.

Similarly, the evidence P (Y |X) can be computed and will be equal to what we obtained
previously.

The point: we can do regression if we can express the joint distribution over all outputs Y
given all inputs as a big Gaussian, regardless of the functional form involved.

Next: nonlinear regression.



Nonlinear Regression

w

xi

yiτ2

w ∼ N (0, τ2I)

σ2

yi ∼ N (w!φ(xi), σ2)

i = 1, . . . , N

Introduce a nonlinear mapping x 7→ φ(x).
Each entry in φ(x) is understood as a (nonlinear) feature extracted from x.

The resulting function f (x) = wTφ(x) is nonlinear, but outputs Y still jointly Gaussian!

Y T|X ∼ N (0N , τ
2ΦTΦ + σ2IN)

where the ith column of matrix Φ is φ(xi).

Proceeds as before, e.g. the predictive distribution over y′ on a test input x′ is:

y′|Y,X, x′ ∼ N
(
τ 2φ(x′)TΦK−1Y T, τ 2φ(x′)Tφ(x′) + σ2 − τ 4φ(x)TΦK−1ΦTφ(x′)

)
K = τ 2ΦTΦ + σ2I



The Covariance Kernel

Y T|X ∼ N (0N , τ
2ΦTΦ + σ2IN)

The covariance of the output vector Y plays a central role in the development of the theory
of Gaussian processes.

Define the covariance kernel K as follows. If x, x′ are two input vectors with corresponding
outputs y, y′, then

K(x, x′) = Cov[y, y′] = E[yy′]− E[y]E[y′]

In the nonlinear regression example we have K(x, x′) = τ 2φ(x)Tφ(x′) + σ2δx=x′.

The covariance kernel has two properties:

• Symmetric: K(x, x′) = K(x′, x) for all x, x′.

• Positive semidefinite: the matrix [K(xi, xj)] formed by any finite set of input vectors
x1, . . . , xN is positive semidefinite.

Theorem: A covariance kernel K is symmetric and positive semidefinite if and only if there
is a feature map φ such that

K(x, x′) = φ(x)Tφ(x′)

The feature map φ(x) can potentially be infinite dimensional.



Gaussian Process Regression

LetK be a covariance kernel. Simply define the joint distribution over outputs Y given inputs
X by

Y |X,K ∼ N (0N , K(X,X))

where the i, j entry in the covariance matrix K(X,X) is K(xi, xj).

By the previous theorem this is equivalent to implicitly using a (potentially infinite-dimensional)
feature map φ(x). This is called the kernel trick.

Prediction: compute the predictive distribution of y′ condition on Y :

y′|x′, X, Y,K ∼ N (K(x′, X)K(X,X)−1Y T︸ ︷︷ ︸
mean

, K(x′, x′)−K(x′, X)K(X,X)−1K(X, x′)︸ ︷︷ ︸
variance

)

Evidence: this is just the Gaussian likelihood:

P (Y |X,K) = |2πK(X,X)|−
1
2e−

1
2Y K(X,X)−1Y T

Evidence optimisation: the covariance kernel K often has parameters, and these can be
optimized by gradient ascent in logP (Y |X,K).



The Gaussian Process

A Gaussian process (GP) is a collection of random variables, any finite number of which
have (consistent) Gaussian distributions.

In our regression setting, corresponding to each input vector x we have an output f (x).
Given X = [x1, . . . , xN ], the joint distribution of the outputs F = [f (x1), . . . , f (xN)] is:

F |X,K ∼ N (0, K(X,X))

Thus the random function f (x) (as a collection of random variables, one f (x) for each x) is
a Gaussian process.

In general, a Gaussian process is parametrized by a mean function m(x) and covariance
kernel K(x, x′), and we write

f (·) ∼ GP(m(·), K(·, ·))

Posterior Gaussian process: on observing X and F , the conditional joint distribution of
F ′ = [f (x′1), . . . , f (x′M)] on another set of input vectors x′1, . . . , x

′
M is still Gaussian:

F ′|X ′, X, F,K ∼ N (K(X ′, X)K(X,X)−1FT, K(X ′, X ′)−K(X ′, X)K(X,X)−1K(X,X ′))

thus the posterior over functions f (·)|X,F is still a Gaussian process!



Regression with Gaussian Processes

We wish to model the joint distribution of outputs y1, . . . , yN given inputs x1, . . . , xN .
Use a GP prior over functions:

f (·) ∼ GP(0, K(·, ·))

Usually, instead of treating yi as direct observation of the function value f (xi), we add Gaus-
sian observation noise:

yi|xi, f (·) ∼ N (f (xi), σ
2)

Evidence: again this is just a multivariate Gaussian likelihood,

P (Y |X) = |2π(K(X,X) + σ2I)|−
1
2e−

1
2Y (K(X,X)+σ2I)−1Y T

Posterior: the posterior function is still a GP,

f (·)|X, Y ∼ GP(K(·, X)(K(X,X) + σ2I)−1Y T, K(·, ·)−K(·, X)(K(X,X) + σ2I)−1K(X, ·))

Prediction: the predictive distribution is just posterior plus observation noise:

y′|X, Y, x′ ∼ N (E[f (x′)|X, Y ],Var[f (x′)|X, Y ] + σ2)

Evidence Optimisation: we can do this by gradient ascent in logP (Y |X).



Samples from a Gaussian Process

We can draw sample functions from a GP by fixing a set of input vectors x1, . . . , xN , and
drawing a sample f (x1), . . . , f (xN) from the corresponding multivariate Gaussian. This can
then be plotted.

Below we plot samples from an example prior and corresponding posterior GP.

Another approach is to

• sample f (x1) first,

• then f (x2)|f (x1),

• and generally f (xn)|f (x1), . . . , f (xn−1) for n = 1, 2, . . ..



Sample from a 2D Gaussian Process



Covariance Kernels

Examples of covariance kernels:

• Polynomial:

K(x, x′) = (1 + xTx′)m m = 1, 2, . . .

• Squared-exponential:

K(x, x′) = θ2e
−‖x−x′‖2

2η2

• Periodic:

K(x, x′) = θ2e
−2 sin2(π(x−x′)/τ)

η2

• Rational Quadratic:

K(x, x′) =

(
1 +
‖x− x′‖2

2αη2

)−α
α > 0



Covariance Kernels

If K1 and K2 are covariance kernels, then so are:

• Rescaling: αK1 for α > 0.

• Addition: K1 + K2

• Elementwise product: K1K2

• Mapping: K1(φ(x), φ(x′)) for some function φ.

We say a covariance kernel is translation-invariant if

K(x, x′) = h(x− x′)

A GP with a translation-invariant covariance kernel is stationary: if f (·) ∼ GP(0, K), then
so is f (· − x) ∼ GP(0, K) for each x.

We say a covariance kernel is radial if

K(x, x′) = h(‖x− x′‖)

A GP with a radial covariance kernel is stationary with respect to translations, rotations, and
reflections of the input space.



Nonparametric Bayesian Models and Occam’s Razor Revisited
We motivated the need for model comparison by showing how models can overfit to training
data if they contain too many parameters.

In the Bayesian treatment of probabilistic models, all parameters are integrated out, so none
of them can overfit to data! For example, in Gaussian processes, the parameter is the func-
tion f (x) itself, which can be infinite-dimensional.

The Gaussian process is an example of nonparametric Bayesian models, which are mod-
els with an infinite number of parameters.

Nonparametric Bayesian models can often be constructed as the infinite limit of a nested
family of finite models. As opposed to the usual Occam’s Razor argument, the nonparamet-
ric Bayesian paradigm says that since overfitting is avoided by integrating out all parameters,
we should simply use the infinite (nonparametric) models.

This sidesteps the need for model selection. But Occam’s Razor is still around: there is often
hyperparameters which govern the complexity of the nonparametric model, and we will need
to choose a good hyperparameter setting. However this can be achieved by optimizing the
usual marginal likelihood (too much complexity is automatically penalized).

Thus the nonparametric Bayesian paradigm replaces model selection by hyperparameter
optimization (usually easier) and no validation set or extra penalty terms required.



End Notes
Automatic relevance determination appeared in MacKay (1993) Bayesian Methods for Back-
propagation Networks and Neal (1993) Bayesian Learning for Neural Networks.
Gaussian processes can also be used in classification and latent variable models. We will
consider classification in the second half of course.

Many of the figures have been copied from a Gaussian process tutorial by Carl Rasmussen
(MLSS 2007) at http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07/CarlERasmussen

An excellent text book on Gaussian processes is Gaussian processes for Machine Learning
by Rasmussen and Williams, available online at http://www.gaussianprocess.org/gpml/

The original paper on Gaussian process latent variable models is by Neil Lawrence (NIPS
2004) at http://www.cs.man.ac.uk/∼neill/
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