
Assignment 3: Graphical Models and Bayesian Treatment of Probabilistic Models

Probabilistic and Unsupervised Learning
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1. [15 marks] Gaussian graphical models. Consider a multivariate Gaussian variable x =
(x1, . . . , xn) with given mean vector µ and covariance matrix Σ.

5% Write out the probability density function for x.

10% Let n = 4, µ = (0, 1, 1, 0) and

Σ =
1
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draw the corresponding undirected graph and define clique potentials consistent with
the above Gaussian. [Hint: multiply out the terms that appear in the exponent.]

2. [25 marks] Conditional independencies and expressiveness of graphical models.
Consider the following graphical models:
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15% For each graph, write down all the conditional independence relationships for variable c
of the form D⊥⊥X|Y, where X and Y can be sets of other variables.

10% Two graphs are equivalent if they have all the same marginal and conditional indepen-
dence relationships between A,B,C, and D. A graph G is subsumed by graph H if
all conditional independence relationships in H are exhibited in G. Divide the above 8
graphs into the smallest number of non-overlapping sets of equivalent graphs, and state
which sets of equivalent graphs are subsumed by another set.



3. [40 marks] Constructing directed graphs and junction trees. You are the doctor
on the Star Trek Enterprise and you are attempting to use Bayesian methods to help your
diagnosis abilities. You would like to represent your knowledge about the following seven
binary random variables describing the state of your patients on any given visit

M = has the disease microsoftus
L = has the disease linuxitis
A = has the disease applosis
V = is a vulcan (V=0 means ‘‘is a human’’)
H = has high temperature
P = likes pizza
B = has blue spots on face

You would like to build a directed graphical model which captures the following background
knowledge:

Microsoftus is a rare disease.
Linuxitis and applosis are very rare diseases.
There are about four times as many humans as vulcans on the ship.
Vulcans have higher probability of getting microsoftus than humans.
Most vulcans like pizza, some humans like pizza.
Microsoftus usually causes high temperature and blue spots on the face.
Linuxitis always causes high temperature.
Applosis sometimes causes blue spots on the face.

10% Draw a directed graphical model representing the relationships between the above vari-
ables. If you need to make any additional assumptions to draw your graph, state clearly
what they are.

10% For each variable in your graph, define a conditional probability table for that variable
given the settings of its parents. Use the above background knowledge and convert those
statements into probability tables which you think reasonably represent them. You will
have to make up numbers for what terms like “rare”, “most”, and “usually” mean.

10% Construct a junction tree for your directed graph, drawing out the intermediate factor
graph, undirected graph and chordal graph. Use the minimum deficiency search variable
elimination order, and show the clique factors on the resulting junction tree.

10% Using Shafer-Shenoy propagation on the junction tree, compute the probability

P(patient is a vulcan | patient has blue spots and high temperature)

Show each message computed. Does this probability match your intuitions?



4. [20 marks] Gaussian processes. Consider zero-mean Gaussian processes with the following
covariance kernels (parameters are all positive, and s and t are real numbers):
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10% Write a MATLAB function to generate samples drawn from a GP. Specifically, given as
input a covariance kernel function and a vector of input points x, return a function f(x)
evaluated on the input points x drawn randomly from a GP with the given covariance
kernel and with zero mean.

10% For each of the two kernels above, use your MATLAB function to draw samples from
GPs with the given covariance kernel for various values of the parameters.
Produce plots of the drawn functions with input points x = −10,−9.9,−9.8, . . . , 9.9, 10,
and with:

i. Covariance kernel k1 with θ1 = 10, τ1 = 2, σ1 = 2, η1 = 5 and ζ1 = .001.
ii. Covariance kernel k1 with θ1 = 1, τ1 = 1, σ1 = 1, η1 = 1000 and ζ1 = .001.
iii. Covariance kernel k2 with θ2 = 1, τ2 = 2, σ2 = 2, φ2 = 2, η2 = 4 and ζ2 = .001.
iv. Covariance kernel k2 with θ1 = 1, τ1 = 2, σ1 = .5, φ2 = 4, η2 = 10 and ζ2 = .001.

Describe the characteristics of the drawn functions, and how the characteristics of the
functions depend on the parameters. How do the two covariance kernels differ from each
other?

5. [Bonus 20 marks] Bayesian linear and Gaussian process regression. The following
time series of monthly mean global CO2 concentrations can be obtained from the file asst3-
co2.txt (original data obtained from http://www.esrl.noaa.gov/gmd/ccgg/trends):
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We will apply Bayesian linear and Gaussian process regression to predict the CO2 concentra-
tion f(t) as a function of time t, where t = Year + (Month− 1)/12.

Bonus 5% First we model the function using linear regression, that is, using the functional form

f(t) = at+ b+ ε(t),



with i.i.d. noise residual ε(t) ∼ N (0, 1) and prior a ∼ N (0, 102), b ∼ N (360, 1002).
Compute (using MATLAB) the posterior mean and covariance over a and b given the
CO2 data.

Bonus 5% Let aMAP, bMAP be the MAP estimate in the question above. The residual is the differ-
ence between the observed function values and the predicted mean function values

gobs(t) = fobs(t)− (aMAPt+ bMAP),

where fobs(t) is the observed value of the CO2 concentration at time t. Plot gobs(t). Do
you think these residuals conform to our prior over ε(t)? Justify what characteristics of
the residual do or do not conform to our prior belief. Consider modelling the residual
function g(t) with a zero mean GP with covariance kernel k2 in question 4. Based on
the plot of g(t) what do you think will be suitable values for the parameters of k2?

Bonus 5% Extrapolate the CO2 concentration levels to 2020 using the GP with covariance kernel
k2 and your chosen parameter values. Specifically, compute the predictive mean and
variance of the residual g(t) for every month between September 2007 and December
2020 given the observed residuals gobs(t). Plot the means and one standard deviation
error bars of the extrapolated CO2 concentration levels

f(t) = aMAPt+ bMAP + g(t)

along with the observed CO2 levels. Does the behaviour of the extrapolation conform
to your expectations?

Bonus 5% Why is the above procedure not Bayesian? How would we go about modelling f(t) in a
Bayesian framework?

6. [Bonus 25 marks] Consider the following two HMMs:

P1(x1:T , s1:T ) = P (s1)P (x1|s1)
T∏

t=2

P (xt|st)P (st|st−1)

and

P2(x1:T , r1:T ) = P (r1)P (x1|r1)
T∏

t=2

P (xt|rt)P (rt|rt−1)

where xt is the observation at time t, st and rt are the hidden state variables for each HMM,
respectively, and the notation x1:T , for example, denotes the sequence x1 . . .xT , Now form a
new model for the data by multiplying these two models and renormalizing:

P3(x1:T , s1:T , r1:T ) =
1
Z
P1(x1:T , s1:T )P2(x1:T , r1:T )

Bonus 2% Draw a factor graph—with a node for each variable xt, st, and rt—representing the
conditional independence relationships in this new model, P3.

Bonus 8% Given a sequence x1:T , describe how you would compute P (st, rt|x1:T ). What is the time
complexity of your algorithm?

Bonus 5% If st and rt are both discrete, taking on at most K states, is this model equivalent to an
HMM with K2 states? Why or why not?



Bonus 5% Assume you want to learn the parameters of this model from data. Let’s re-write the
model more explicitly to make it clear:

P3(x1:T , s1:T , r1:T |θ, φ) =
1

Z(θ, φ)
P1(x1:T , s1:T |θ)P2(x1:T , r1:T |φ)

where θ and φ are the usual transition, emission, and initial state HMM parameters
for HMM 1 and 2, respectively, and Z is the normalization term, which depends on
these parameters. What is the derivative of the log likelihood of P3 with respect to the
transition parameter, θij ≡ P (st+1 = j|st = i)? Calculate the derivative of Z explicitly.

Bonus 5% Assume there are L possible symbols: xt ∈ {1, . . . , L} and each HMM has K states.
What is the maximum mutual information between xt and xt+1 in this model, maximiz-
ing over all parameters?


