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Mixtures of Gaussians The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts from

arbitrary values of the parameters, and iterates two steps:
Data: X ={x;...xy}

Latent process:

id .
Si ~ Disc[n] E step: Fill in values of latent variables according to posterior given data.

Component distributions: M step: Maximise likelihood as if latent variables were not hidden.

X; | (Si = m) ~ ,Pm[em} = N(I"'?TH Em)

Marginal distribution:
e Useful in models where learning would be easy if hidden variables were, in fact, observed

k
P(xi> = Z 7TIrLPm<x; 0m> (eg MOGS)'
m=1 e Decomposes difficult problems into series of tractable steps.

e No learning rate.
Log-likelihood: e Framework lends itself to principled approximations.
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Jensen’s Inequality

log(x)

|Og{ux1+(1—u)x2)< )
alog(x7)+(1—(x)log(x2)mwWWWwwww

X (xX1+(1—OL)X2 X,

Fora; > 0,> «; = 1and any {z; > 0}

log (Z aixi> > Z a; log(x;)
Equality if and only if o; = 1 for some 7 (and therefore all others are 0).
The Free Energy for a Latent Variable Model
Observed data X = {x;}; Latent variables ) = {y;}; Parameters 6.
Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
£06) = log P(X]6) = log | PV, X)d,

Any distribution, ¢()), over the hidden variables can be used to obtain a lower bound on the

log likelihood using Jensen’s inequality:

P, X10)
q(y)

PO, X0)

dyZ/q(y)log o ¥ r(q,0).

00) = log/q(y)

Now,

/ ) lg% qy - / 4() log PV, X|6) 4 — / 4(Y)logg(Y) dY

= /61(37) log P(Y, X10) dY + H[g],
where HJ[g] is the entropy of ¢()).

So:
F(q.6) = (o PV, X]6)) 3, + Hlg

The E and M steps of EM

The lower bound on the log likelihood is given by:

EM alternates between:
E step: optimize F(q, 6) wrt distribution over hidden variables holding parameters fixed:

qM(Y) == argmax F(q(¥),0" ).

a(y)

M step: maximize F(q, §) wrt parameters holding hidden distribution fixed:

0" = argmax F(¢"(),0) = argmax (log P(Y, X[0)) 0y,
0 0

The second equality comes from the fact that the entropy of ¢()) does not depend directly
on 6.

EM as Coordinate Ascent in F
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The E Step

The free energy can be re-written

Fao- [ <y>m% ay
PY|X,0)P(X]0)
/ q(Y) d
V) log P(X]0) dy+/ (y)log%dy

=4(6) — KL[g(V)[| P(Y]X,0)]
The second term is the Kullback-Leibler divergence.

This means that, for fixed #, F is bounded above by ¢, and achieves that bound when
KL[gOD)[[P(Y|X,0)] = 0.

But KL[g||p] is zero if and only if ¢ = p. So, the E step simply sets

¢"(¥) = PV|x,6"Y)

and, after an E step, the free energy equals the likelihood.

The KL[¢(z)||p(z)] is non-negative and zero iff Vx : p(z) = ¢(z)

First let’s consider discrete distributions; the Kullback-Liebler divergence is:
KL{q||p] = Z gilo

To find the distribution ¢ which minimizes KL[¢||p] we add a Lagrange multiplier to enforce
the normalization constraint:

B KL [q”p]Jr)\leq] qulog—JrAl—Zq,ﬂ)

We then take partial derivatives and set to zero:

0FE

dq;
OF = Gi = Di-

N 1—Xi:qi:0$§/:q;:l

= logg; —logpi+1—A=0= ¢, = p;exp(A — 1)

The KL[¢(z)||p(x)] is non-negative and zero iff Vx : p(x) = q(z)

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

PE 1 OE

= > 0, =
0¢:0q  qi 0q;0q j

showing that ¢; = p; is a genuine minimum.
At the minimum is it easily verified that KL[p||p] = 0.

A similar proof holds for KL[-||-] between continuous densities, the derivatives being substi-
tuted by functional derivatives.

Coordinate Ascent in 7 (Demo)

One parameter mixture:

s ~ Bernoulli[r]
zls =0~ N[-1,1  z|ls=1~ N1

and one data point z; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r, € [0, 1].




Coordinate Ascent in 7 (Demo) Fixed Points of EM are Stationary Points in ¢
Let a fixed point of EM occur with parameter 6*. Then:

=0
9%

o

Now, {(0)=log P(X10)= (log P(X10)) p(y1x o)

{1 P, Xx|0)
—<1g P|x, 9>> POIX.6%)

= (log P(Y, X10)) p(yjx 6y — {log POVIX,0)) iy )

S0, d d d
The second term is 0 at 0" if the derivative exists (minimum of KL[-||-]), and thus:
d d
So, EM converges to a stationary point of £(0).
EM Never Decreases the Likelihood Maxima in F correspond to maxima in /¢

The E and M steps together never decrease the log likelihood:

Let #* now be the parameter value at a local maximum of F (and thus at a fixed point)

O* Dy = F(gW oWy < F(gW oWy < e(6™), Differentiating the previous expression wrt 6 again we find
E step M step Jensen e d 2

) o The first term on the right is negative (a maximum) and the second term is positive (a mini-
* The E step brings the free energy to the likelihood. mum). Thus the curvature of the likelihood is negative and
e The M-step maximises the free energy wrt 6.

e F < ( by Jensen — or, equivalently, from the non-negativity of KL 0* is a maximum of ¢

If the M-step is executed so that 8*) = 9~V iff F increases, then the overall EM iteration

will step to a new value of @ iff the likelihood increases. [...as long as the derivatives exist. They sometimes don'’t (zero-noise ICA)].



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the gs.

For example, sparse or online versions of the EM algorithm would compute the posterior
for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...

The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

k k

m 1
p(x|d) = Zp(s =m|0)p(x|s =m,0) x Z 7T—exp — ﬁ(x — ,U/m)Q}-,

n
m=1 m=1_" m

2
m

where 0 is the collection of parameters: means ., variances ¢, and mixing proportions

Tm = p(s = m|h).

The hidden variable s; indicates which component observation x; belongs to.
The E-step computes the posterior for s; given the current parameters:

q(si)= p(silzi, 0) o< p(ai|si, O)p(si|6)

e 1 I
Tim dof q(s; = m)x lexp{ — ﬁ(.ri — /Lm)z} (responsibilities)

0-771 m

with the normalization such that > r;, = 1.

m

The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):
E = (log p(, 5(0)),0) = > _ a(s)loglp(s|0) p(]s, 0)]
— Z Tim [ 10g T — log o —

i,m

1 2
?,2”(1‘7' - ,u'm> ]

Optimization is done by setting the partial derivatives of E to zero:

aE Ti— Hm i Tim@;
= Zrhn%izﬂ) =0= W = L

aum Z,‘ Fim

aE |: 1 (.Ti — /1,m>2 2 Z 7‘1'”1('/1‘/ - /‘77})2
= r - + 7} - () j U//I = 1—7

don, 21: " Om o Zi Vim

OF 1 OF 1

87-[—7“ = Z’r’ima’ aﬂ'm +A=0= T = ; Z Tim,

where )\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

Factor Analysis

K
Linear generative model: z; = Z Aar yi + €4

k=1
e ;. are independent AV(0, 1) Gaussian factors
e ¢, are independent A/ (0, ¥y,) Gaussian noise
e K<D

So, x is Gaussian with: p(x) = /p(y)p(x\y)dy = N(0,AA" + 1)
where Ais a D x K matrix, and VU is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

The model for x:

p(x[6) = / p(yO)p(xly. )dy = N(0, AAT 1)

Model parameters: § = {A, U'}.

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: ¢,(y) = p(y|xn, 0).

M step: Find the 6, that maximises F(q, 6):

0) = 3 [ 0y lozp(ylo) + iy, ) ~ loza,(y)] dy

= 3 [ a9) oz p(y16) + logplx,ly, )] dy +c.

The E step for Factor Analysis

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: g,(y) = p(y[xn, 0) = p(y, xu|6) /p(x,|6)

Tactic: write p(y, x,,|0), consider x,, to be fixed. What is this as a function of y?

Py, xn) = p(y)p(xuly)
= (2m) ¥ exp{— 3y "y} [2m ¥l Fexp{ 500 — Ay) T8, — Ay))
= o x exp{ =3Iy Ty + (xn — Ay) U, — Ay)]}
= x exp{—%[yT([ AT )y — 2y TAT U I, ]}

T /

1, B B
= " xexp{—gly"" ly =2y Tt p T}

SoY =(I+A WA =T 3Aand = SATU !, = Bx,. Where 8 = SATUL,
Note that 1 is a linear function of x,, and ¥ does not depend on x,,.

The M step for Factor Analysis

M step: Find 6, maximising 7 = " [ ga(y) [log p(y|0) + log p(x.]y, 6)] dy + ¢

1
log p(y|0)+log p(x,]y,0) =c — -y 'y — *108 | — (xn — Ay) "0 (x, — Ay)

2
1 1

= — S log W] = Sx, "W, — 2%, "W Ay +yTATU T Ay
1 1

—c¢— 5 log [W| — 5[x,ﬁqﬂx" — 2%, U Ay + Tr [ATU Ayy ']

Taking expectations over ¢,(y). ..
=¢—= log> |w| — [XHT\I/ X, — 2%, U A 4+ Tr [ATU T A (" + 3)]]

Note that we don’t need to know everything about ¢, just the expectations of y and yy " under
q (i.e. the expected sufficient statistics).

The M step for Factor Analysis (cont.)

N 1
F=e—log|¥] -5 Z [, "0 %, — 2%, O A+ Te [ATO T A (" +5)]]

Taking derivatives w.r.t. A and U~!, using ‘)T'[AB] =AT and 01%\‘4\ =A"T:

—\ =y! zn:x"'“"T — P IA (NE + Zu,,u,,f) =0

n

-1
= (Z X”ﬂ’?lT) (‘\\_‘+ Z :“n,“'nT>

0
f = = . Z XILX‘IL - A;U'nxn-r - X?LMTLTAT + A(Mn,un-r + E>AT}

- 1
V= N Z [X"x'n - AILL"XHT - 'rIUrLTAT + A(/j‘n/LnT + Z>AT}
—AY \T+ Z (X — Aptn) (X — Aptn) " (squared residuals)

Note: we should actually only take derivarives w.r.t. W, since WV is diagonal.
When > — 0 these become the equations for linear regression!



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

X|9 Zﬂk ,uk A\ ]\‘+\IJ)

where 7, is the mixing proportion for FA k, uy. is its centre, Ay is its “factor loading matrix”,

and VU is a common sensor noise model. 6 = {{m, tx, Ag b =155, V}
We can think of this model as having two sets of hidden latent variables:

o A discrete indicator variable s, € {1,... K}

o For each factor analyzer, a continous factor vector y,, . € RP*

o) = 3 plsalt) / (3150, O)p(xaly, 51 0) dy

sp=1

As before, an EM algorithm can be derived for this model:
E step: Infer joint distribution of latent variables, p(y,, sn|X,, 6)

M step: Maximize F with respect to 6.

EM for exponential families

Defn: p is in the exponential family for z = (y, x) if it can be written:
p(2]0) = b(z) exp{0 " s(z)}/a(6)
where a(0) = [ b(z) exp{0" s(z)}dz
E step: ¢(y) = p(ylx,0)
M step: 0% = argmax F(q,9)
) = [ aly)lozply. i)y — Hia)
/ qly — log a(6)]dy + const

dlog (6
It is easy to verify that: 02790[“ = E[s(z)|0]

5}
Therefore, M step solves: 5)7]6: = Eyy)[s(z)] — E[s(2)]0] =
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Failure Modes of EM

EM can fail under a number of degenerate situations:

e EM may converge to a bad local maximum.

e Likelihood function may not be bounded above. E.g. a cluster responsible for a single
data item can given arbitrarily large likelihood if variance o,,, — 0.

e Free energy may not be well defined (or is —o0).



Proof of the Matrix Inversion Lemma

(A+XBXT) 1 =AT-AXB '+ XTAIX)IXTA?

Need to prove:
(A7 — AT XB '+ XA X)X TA Y (A+XBX ) =1

Expand:

T+ A'XBXT - A ' XB '+ XTATX) I XT - A X (B T+ XTA'X) ' XTA ' XBXT

Regroup:

I+ A X (BX" =B '+ XTAX)'XT - (B + XTA'X)'XTA' XBXT)

= I+A'X(BXT—(B'+XTA'X) "B 'BXT — (B + XTA'X) 'XTA'XBXT)
= I+A'X(BXT— (B '+ XTA'X) (B '+ XTA ' X)BXT)

= I+A'X(BX"-BX") =1

Proof of the Matrix Inversion Lemma



