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Three Kinds of Graphical Models

A B

C

D

E

"
"

"

A B

C

D

E

A B

C

D

E

! !

!

!!
!

factor graph undirected graph directed graph

Nodes in graph correspond to random variables.

Edges in graph correspond to statistical dependencies between the corresponding variables.

(Absence of edges correspond to conditional independencies between variables).

Why Do We Need Graphical Models?

• Graphs are an intuitive way of representing and visualising the relationships between
many variables. (Examples: family trees, electric circuit diagrams, neural networks)

• Graphical models are a precise language to describe these relationships between vari-
ables.

• A graph allows us to abstract out the conditional independence relationships between the
variables from the details of their parametric forms. Thus we can ask questions like: “Is
A dependent on B given that we know the value of C ?” just by looking at the graph.

• Graphical models allow us to define general-purpose message-passing algorithms that
implement Bayesian inference efficiently. Thus we can answer queries like “What is
P (A|C = c)?” without enumerating all settings of all variables in the model.



Conditional Independence

Conditional Independence:

X⊥⊥Y |V ⇔ P (X|Y, V ) = p(X|V )

when P (Y, V ) > 0. Also

X⊥⊥Y |V ⇔ P (X, Y |V ) = P (X|V )P (Y |V )

In general we can think of conditional independence between sets of variables:

X⊥⊥Y|V ⇔ {X⊥⊥Y |V , ∀X ∈ X and ∀Y ∈ Y}

Marginal Independence:

X⊥⊥Y ⇔ X⊥⊥Y |∅ ⇔ p(X, Y ) = p(X)p(Y )

Factor Graphs
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The circles in a factor graph represent random variables.
The filled squares represent factors in the joint distribution.

(a) P (A, B, C, D, E) = 1
Zf1(A, C)f2(B, C,D)f3(C, D, E)

(b) P (A, B, C, D, E) = 1
Zf1(A, C)f2(B, C)f3(C, D)f4(B, D)f5(C, E)f6(D, E)

The fj are non-negative functions of their arguments, and Z is a normalization constant,
e.g. in (a):

Z =
∑

a∈A

∑

b∈B

∑

c∈C

∑

d∈D

∑

e∈E
f1(a, c)f2(b, c, d)f3(c, d, e)

where A, B, C, D and E are domains for the corresponding variables.

Factor Graphs
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In a factor graph, the probability distribution over variables in a factor graph factorizes:

p(X) =
1

Z

∏

j

fj(XCj)

where X = (X1, . . . , XK), XS = (Xi : i ∈ S), j indexes the factors fj, Cj are the indices
of variables adjacent to factor j, and Z is a normalization constant.
Factors describe compatibility between adjacent variables.

Two nodes are neighbours if they share a common factor.
Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V .
Corollary: Given the neighbours of X , the variable X is conditionally independent of all
other variables: X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}.

Proving Conditional Independence

Assume the following factorization:

P (X, Y, V ) =
1

Z
g1(X, V )g2(Y, V )

Let’s show that the above implies the conditional independence:

X⊥⊥Y |V ⇔ p(X|Y, V ) = p(X|V )

Summing over X ,

p(Y, V ) =
1

Z

(
∑

X

g1(X, V )

)
g2(Y, V )

So dividing P (X, Y, V ) by P (Y, V ) gives

p(X|Y, V ) =
p(X, Y, V )

p(Y, V )
=

g1(X, V )∑
X ′ g1(X ′, V )

Since the RHS does not depend on Y , it follows that X is independent from Y given V .



Undirected Graphical Models
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In an undirected graphical model, the joint probability over all variables can be written in
a factored form:

P (X) =
1

Z

∏

j

fj(XCj)

where Cj are the maximal cliques of the undirected graph.
(Cliques are fully connected subgraphs, maximal cliques are cliques not contained in other
cliques).

Undirected graphical models are also called Markov networks.

Undirected graphical models are very similar to factor graphs (not quite equivalent).

Undirected Graphical Models
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P (A, B, C, D, E) =
1

Z
g1(A, C)g2(B, C,D)g3(C, D, E)

Fact: X⊥⊥Y |V if every path between X and Y contains some node V ∈ V

Corollary: Given the neighbours of X , the variable X is conditionally independent of all
other variables: X⊥⊥Y | ne(X), ∀Y /∈ {X ∪ ne(X)}

V is a Markov blanket for X iff X⊥⊥Y |V for all Y /∈ {X ∪ V}.

Markov boundary: minimal Markov blanket≡ ne(X) for undirected graphs and factor graphs.

Examples of Undirected Graphical Models

• Markov random fields (used in computer vision)

• Maximum entropy language models (used in speech and language modelling)

p(X) =
1

Z
p0(X) exp





∑

j

λjgj(X)






• Conditional random fields are undirected graphical models (conditioned on the input vari-
ables).

• Boltzmann machines (a kind of neural network/Ising model)

Comparing Undirected Graphs and Factor Graphs
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All nodes in (a), (b), and (c) have exactly the same neighbours and therefore these three
graphs represent exactly the same conditional independence relationships.

(c) also represents the fact that the probability factors into a product of pairwise functions.

Consider the case where each variables is discrete and can take on K possible values.
Then the functions in (a) and (b) are tables with O(K3) cells, whereas in (c) they are O(K2).

Factor graphs have richer expressive power than undirected graphical models.



Problems with Undirected Graphs and Factor Graphs

In undirected and factor graphs, many useful independencies are unrepresented—two vari-
ables are connected merely because some other variable depends on them:

Rain Sprinkler

Ground wet

Rain Sprinkler

Ground wet

This highlights the difference between marginal independence and conditional indepen-
dence.

R and S are marginally independent (i.e. given nothing), but they are conditionally depen-
dent given G.

Explaining Away: Observing that the spinkler is on, explains away the fact that the ground
was wet, therefore we don’t need to believe that it rained.

Directed Acyclic Graphical Models
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A directed acyclic graphical (DAG) model represents a factorization of the joint probability
distribution in terms of conditionals:

p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)

In general:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Xpa(i))

where pa(i) are the parents of node i.

DAG models are also known as Bayesian networks or Bayes net.

Conditional Independence in Directed Acyclic Graphs
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Reading conditional independence from DAGs is more complicated than in undirected graphs.

• A⊥⊥E | {B, C}: observed nodes block paths
• A )⊥⊥B | C: observed node creates path by explaining away
• A )⊥⊥E | C: created path extends to E via D

• A⊥⊥E | {C, D}: extra path blocked by observing D

So observing (i.e. conditioning on) nodes can both create and remove dependencies.

D-separation
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Consider two nodes X , Y and a set of observed nodes V . When is X⊥⊥Y |V?

We consider every undirected path1 between X and Y . Say that the path is blocked if there
is a node W on the path such that either:

• W has convergent arrows (→W ←) on the path and neither W nor its descendents
are in V . W is also called a collider node.

• or W does not have convergent arrows (→W→ or ←W→) and W ∈ V . This is similar
to the undirected graph semantics.

If all paths are blocked, we say V d-separates X from Y (d for directed), and X⊥⊥Y |V .

Markov boundary for X : {parents(X) ∪ children(X) ∪ parents-of-children(X)}.
1A path in the DAG ignoring the direction of edges.



The Bayes-ball algorithm
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Game: can you get a ball from X to Y without being blocked by V? If so, X )⊥⊥Y |V .

Rules: the ball can only be passed along or bounced back under the following conditions:

• If W /∈ V and either →W→ or ←W←, then the ball is passed along.

• If W /∈ V , then the ball is bounced from any child to any child (including the child it came
from).

• If W ∈ V , then the ball is bounced from any parent to any parent (including the parent it
came from).

Note: if W ∈ V it blocks all balls from its children, and balls from parents are blocked from
reaching its children.

Expressive Power of Directed and Undirected Graphs
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No DAG can represent these and
only these independencies

No matter how we direct the arrows there will always be two non-adjacent parents sharing a
common child =⇒ dependence in DAG but independence in undirected graph.
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No undirected or factor graph can
represent these and only these in-
dependencies

Graphs, Conditional Independencies, and Families of Distributions

Corresponding to each (factor, undirected, directed acyclic) graph G is a set of conditional
independency statements CG = {Xi⊥⊥Yi|Vi}.

Corresponding to G is also a parameterized family of distributions PG, e.g. for factor graph

PG = {p(X) : p(X) = 1
Z

∏
j fj(XCj), for some non-negative functions fj }

Corresponding to any set of conditional independency statements C is also a family of dis-
tributions satisfying all statements in C:

PC = {p(X) : p(Xi, Yi|Vi) = p(Xi|Vi)p(Yi|Vi) for all Xi⊥⊥Yi|Vi in C }

• Adding edges to graph ⇒ removing conditional independency statements ⇒ enlarging
the family of distributions (converse true for removing edges).

• For directed graphs we have PG = PCG.

• For undirected graphs we also have PG = PCG if we assume that all distributions are
positive, i.e. p(X) > 0 for all values X take on (Hammersley-Clifford Theorem).

• There are factor graphs for which PG ⊂ PCG.

• Factor graphs are more expressive than undirected graphs: for every undirected graph
G1 there is a factor graph G2 with CG1 = CG2 but not vice versa.

Summary

• Three kinds of graphical models: directed acyclic, undirected, factor graphs.
There are other important classes, e.g. directed mixed graphs.

• Conditional independencies and marginal independencies.

• Markov blanket, boundaries and d-separation.

• Differences between all three types of graphical models.

• Next up: tree-structured graphical models, message-passing algorithms.



Tree-structured Graphical Models

Polytrees to Tree-structured Factor Graphs

Polytrees are tree-structured DAGs with potentially multiple roots.

p(X) =
∏

i

p(Xi|Xpa(i))

=
∏

i

fi(XCi)

where Ci = i ∪ pa(i) and fi(XCi) = p(Xi|Xpa(i)).

Marginal distribution on roots p(Xr) absorbed into an adjacent factor.

Directed Rooted Trees to Undirected Trees

p(X) = p(Xr)
∏

i )=r

p(Xi|Xpa(i))

=
∏

edges (ij)

f(ij)(Xi, Xj)

Undirected Trees to Directed Rooted Trees

This direction is trickier; if we can compute the marginal distributions on single nodes p(Xi)
and on edges p(Xi, Xj), then the DAG is parameterized as:

p(X) = p(Xr)
∏

i )=r

p(Xi|Xpa(i))

= p(Xr)
∏

i )=r

p(Xi, Xpa(i))

p(Xpa(i))

=

∏
edges (ij) p(Xi, Xj)∏
nodes i p(Xi)deg(i)-1

Picking any node as root and pointing all edges away from it (computing conditional distri-
butions using above) gives the DAG parameterization.
How do we compute p(Xi) and p(Xi, Xj)? Belief propagation!



Belief Propagation on Undirected Trees

i j

Undirected tree parameterization for joint distribution:

p(X) =
1

Z

∏

edges (ij)

f(ij)(Xi, Xj)

Define Ti→j to be the subtree containing i if j is removed. Define messages:

Mi→j(Xj) =
∑

XTi→j

f(ij)(Xi, Xj)
∏

edges (i′j′) in Ti→j

f(i′j′)(Xi′, Xj′)

Then the messages can be recursively computed as follows:

Mi→j(Xj) =
∑

Xi

f(ij)(Xi, Xj)
∏

k∈ne(i)\j

Mk→i(Xi)

and:

p(Xi) ∝
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ∝ f(ij)(Xi, Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)

Recap on Graphical Models

{p(X) =
∏

i p(Xi|Xpa(i))}

{Xi⊥⊥Yi|Vi}

{p(X) : p(Xi, Yi|Vi)
=p(Xi|Vi)p(Yi|Vi)}

Inference in Graphical Models

Thus far, we have used graphical models to encode the conditional independencies and
parameterizations of probability distributions visually. Can they do more?

We often need to compute a function of the distribution
on hidden nodes conditioned on some observed ones.

• marginals: p(A|DE), . . ..

• most likely values: argmax p(ABC|DE)

Message passing algorithms exploit conditional inde-
pendence relationships to make this computation effi-
cient. Examples:

• forward-backward on HMMs and SSMs,

• Viterbi on HMMs and SSMs,

• Belief Propagation on undirected trees.

Today we will learn about message-passing algorithms that can work on arbitrary graphs.
Specifically we will try to compute marginal distributions over single variables.

Graph Transformations

Our general approach to inference in arbitrary graphical models is to transform these graph-
ical models to ones belonging to an easy-to-handle class (specifically, junction or join
trees).

Suppose we are interested in inference in a distribution p(X) representable in a graphical
model G.

• In transforming G to an easy-to-handle G′, we need to ensure that p(X) is representable
in G′ too.

• This can be ensured by making sure that every step of the graph transformation only
removes conditional independencies, never adds them.

• This guarantees that the family of distributions can only grow at each step, and p(X) will
be in the family of distributions represented by G′.

• Thus inference algorithms working on G′ will work for p(X) too.



The Junction Tree Algorithm
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Directed Acyclic Graphs to Factor Graphs

C

A B

D

E C

A B

D

E

Factors are simply the conditional distributions in the DAG.

p(X) =
∏

i

p(Xi|Xpa(i))

=
∏

i

fi(XCi)

where Ci = i ∪ pa(i) and fi(XCi) = p(Xi|Xpa(i)).

Marginal distribution on roots p(Xr) absorbed into an adjacent factor.

Entering Evidence in Factor Graphs
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Often times we are interested in inferring posterior distributions given observed evidence
(e.g. D = wet and C = rain).

This can be achieved by adding factors with just one adjacent node, with

fD(D) =

{
1 if D =wet;
0 otherwise.

fC(C) =

{
1 if C =rain;
0 otherwise.

Factor Graphs to Undirected Graphs
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Just need to make sure that every factor is contained in some maximal clique of the undi-
rected graph.

p(X) =
1

Z

∏

i

fi(XCi)

We can make sure of this simply by converting each factor into a clique, and absorbing
fi(XCi) into the factor of some maximal clique containing it.

The transformation DAG ⇒ undirected graph is called moralization—we simply “marry” all
parents of each node by adding edges connecting them, then drop all arrows on edges.



Triangulation of Undirected Graphs
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Message passing—messages contain information from other parts of the graph, and this
information is propagated around the graph during inference.

If loops (cycles) are present in the graph, message passing can lead to overconfidence due
to double counting of information, and to oscillatory (non-convergent) behaviour2.

To prevent this overconfident and oscillatory behaviour, we need to make sure that different
channels of information communicate with each other to prevent double counting.

Triangulation: add edges to the graph so that every loop of size > 4 has at least one chord.
Note recursive nature: adding edges often creates new loops; we need to make sure new
loops of length > 4 have chords too.

2This is called loopy belief propagation, and we will see in the second half of the course that this is an
important class of approximate inference algorithms.

Triangulation of Undirected Graphs
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Triangulation: add edges to the graph so that every loop of size > 4 has at least one chord.

Remember that adding edges always removes conditional independencies and enlarges the
family of distributions.

There are many ways to add chords; in general finding the best triangulation is NP-complete.

Here we describe one method of triangulation called variable elimination.

An undirected graph where every loop of size > 4 has at least one chord is called chordal
or triangulated.

Variable Elimination of Undirected Graphs

Say we compute the marginal distribution of a variable by brute force—sum out all other
variables one by one (eliminate it from the graph).
Let the order of elimination be Xσ(1), Xσ(2), . . . , Xσ(n) with Xσ(n) being the variable whose
marginal distribution we are interested in.

p(Xσ(n)) =
∑

Xσ(n−1)

· · ·
∑

Xσ(1)

p(X) =
1

Z

∑

Xσ(n−1)

· · ·
∑

Xσ(2)

∑

Xσ(1)

∏

i

fi(XCi)

=
1

Z

∑

Xσ(n−1)

· · ·
∑

Xσ(2)

∏

i:Ci )0σ(1)

fi(XCi)
∑

Xσ(1)

∏

i:Ci0σ(1)

fi(XCi)

=
1

Z

∑

Xσ(n−1)

· · ·
∑

Xσ(2)

∏

i:Ci )0σ(1)

fi(XCi)fnew(XCnew)

where Cnew = ne(i), and the edges are added to the graph connecting all nodes in Cnew.

Variable Elimination of Undirected Graphs

After we have eliminated all variables, go back to original graph, and add in all edges added
during elimination.

Theorem: the graph with elimination edges added in is chordal.
Proof: by induction on the number of nodes in the graph.

Finding a good triangulation is related to finding a good elimination ordering σ(1), . . . ,σ(n).
This is NP-complete.

Heuristics for good elimination ordering exist. Pick next variable to eliminate by:

• Minimum deficiency search: choose variable with least number of edges added.

• Maximum cardinality search: choose variable with maximum number of neighbours.

Minimum deficiency search has been empirically found to be better.



Chordal Graphs to Junction Trees
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A junction tree (or join tree) is a tree where nodes and edges are labelled with sets of
variables.

Variable sets on nodes are called cliques, and variable sets on edges are separators.

A junction tree has two properties:

• Cliques contain all adjacent separators.

• Running intersection property: if two cliques contain variable X , all cliques and sepa-
rators on the path between the two cliques contain X .

The running intersection property is required for consistency.

Chordal Graphs to Junction Trees
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The following procedure converts a chordal graph to a junction tree:

1. Find the set of maximal cliques C1, . . . , Ck (each of these cliques consists of an elimi-
nated variable and its neighbours, so finding maximal cliques is easy).

2. Construct a weighted graph, with nodes labelled by the maximal cliques, and edges la-
belled by intersection of adjacent cliques.

3. Define the weight of an edge to be the size of the separator.

4. Run maximum weight spanning tree on the weighted graph.

5. The maximum weight spanning tree will be the junction tree.

Recap: Belief Propagation on Undirected Trees

i j

Undirected tree parameterization for joint distribution:

p(X) =
1

Z

∏

edges (ij)

f(ij)(Xi, Xj)

Define Ti→j to be the subtree containing i if j is removed. Define messages:

Mi→j(Xj) =
∑

XTi→j

f(ij)(Xi, Xj)
∏

edges (i′j′) in Ti→j

f(i′j′)(Xi′, Xj′)

Then the messages can be recursively computed as follows:

Mi→j(Xj) =
∑

Xi

f(ij)(Xi, Xj)
∏

k∈ne(i)\j

Mk→i(Xi)

and:

p(Xi) ∝
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ∝ f(ij)(Xi, Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)

Message Passing on Junction Trees

Ck

Ci Cj
Ski

Sij

Cl
Sli

Since maximal cliques in the chordal graph are nodes of the junction tree, we have:

p(X) =
1

Z

∏

i

fi(XCi)

where Ci ranges over the cliques of the junction tree.

Let Sij = Ci ∩ Cj be the separator between cliques i and j.
Let Ti→j be the union of cliques on the i side of j.

Define messages:

Mi→j(XSij) =
∑

XTi→j\Cj

∏

k:Ck⊂Ti→j

fk(XCk
)



Message Passing on Junction Trees
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Messages can be computed recursively by:

Mi→j(XSij) =
∑

XCi\Sij

fi(XCi)
∏

k∈ne(i)\j

Mk→i(XSki
)

And marginal distributions on cliques and separators are:

p(XCi) = fi(XCi)
∏

k∈ne(i)

Mk→i(XSki
)

p(XSij) = Mi→j(XSij)Mj→i(XSij)

This is called Shafer-Shenoy propagation.

Consistency and Parameterization on Junction Trees

Because of the running intersection property and because junction trees are trees, local
consistency of marginal distributions between cliques and separators guarantees global
consistency.

If qi(XCi), rij(XSij) are distributions such that
∑

XCi\Sij

qi(XCi) = rij(XSij)

Then the following

p(X) =

∏

cliques i

qi(XCi)

∏

separators (ij)

rij(XSij)

Ck

Ci Cj

Ski

Sij

Cl

Sli

is also a distribution (non-negative and sums to one) such that:

qi(XCi) =
∑

X\XCi

p(X) rij(XSij) =
∑

X\XSij

p(X)

Reparameterization on Junction Trees
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Hugin propagation is a different (but equivalent) message passing algorithm.
It is based upon the idea of reparameterization. Initialize:

qi(XCi) ∝ fi(XCi) rij(XSij) ∝ 1

Then our probability distribution is initially

p(X) ∝
∏

cliques i qi(XCi)∏
separators (ij) rij(XSij)

A Hugin propagation update for i → j is:

rnew
ij (XSij) =

∑

XCi\Sij

qi(XCi) qnew
j (XCj) = qj(XCj)

rnew
ij (XSij)

rij(XSij)

Reparameterization on Junction Trees
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Some properties of Hugin propagation:

• The defined distribution p(X) is unchanged by the updates.

• Each update introduces a local consistency constaint:
∑

XCi\Sij

qi(XCi) = rij(XSij)

• If each update i → j is carried out only after incoming updates k → i have been carried
out, then each update needs only be carried out once.

• Each Hugin update is equivalent to the corresponding Shafer-Shenoy update.



Computational Costs of the Junction Tree Algorithm

Most of the computational cost of the junction tree algorithm is incurred during the message
passing phase.

The running and memory costs of the message passing phase is O(
∑

i |XCi|). This can be
significantly (exponentially) more efficient than brute force.

The variable elimination ordering heuristic can have very significant impact on the message
passing costs.

For certain classes of graphical models (e.g. 2D lattice Markov random field) it is possible to
hand-craft an efficient ordering.

Other Inference Algorithms

There are other approaches to inference in graphical models which may be more efficient
under specific conditions:

Cutset conditioning: or “reasoning by assumptions”. Find a small set of variables which, if
they were given (i.e. known) would render the remaining graph “simpler”. For each value of
these variables run some inference algorithm on the simpler graph, and average the result-
ing beliefs with the appropriate weights.

Loopy belief propagation: just use belief propagation eventhough there are loops. No
guarantee of convergence, but often works well in practice. Some (weak) guarantees about
the nature of the answer if the message passing does converge.

Second half of course: we will learn about a variety of approximate inference algorithms
when the graphical model is so large/complex that no exact inference algorithm can work
efficiently.

Learning in Graphical Models

In combination with an appropriate message passing algorithm, the factored structure im-
plied by the graph also makes learning easy.

Consider data points comprising observations of a subset of variables.
ML learning ⇒ adjust parameters to maximise:

L = p(Xobs|θ)

=
∑

Xunobs

p(Xobs, Xunobs|θ)

by EM, need to maximise

F(q, θ) = 〈log p(Xobs, Xunobs|θ)− log q(Xunobs)〉q(Xunobs)

= 〈
∑

i log fi(XCi|θi)− log Z(θ)〉q(Xunobs)
+ H(q)

=
∑

i

〈log fi(XCi|θi)〉q(XCi
\Xobs)

− log Z(θ) + H(q)

So learning only requires posterior marginals on cliques (obtained by messaging passing)
and updates on cliques; c.f. the Baum-Welch procedure for HMMs.


