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Models We’ve Learned About So Far

• Factor analysis, principle components analysis, Probabilistic PCA.

• Linear regression, Gaussian processes.

• Mixture of Gaussians, mixture of experts.

• Hidden Markov models, linear Gaussian state space models.

Models consisting of various combinations of:

• Linear Gaussian,

• mixture,

• dynamical,

See Roweis & Ghahramani (1999) A Unifying Review of Linear Gaussian Models.

There is a need to go beyond such models. In this lecture we’ll learn about

• hierarchical models,

• distributed models,

• Nonlinear models,

• Non-Gaussian models.

and various combinations thereof.



Why We Need . . . Nonlinear/Non-Gaussian Models

. . . most of the world is not linear nor Gaussian. . .
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. . . most interesting structure we would like to learn about is not either . . .



Why We Need . . . Hierarchical Models

Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.



Why We Need . . . Distributed Models
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Consider a hidden Markov model. To capture N bits of information about the history of the
sequence, an HMM requires K = 2N states!

In a distributed representation each data point is represented by a vector of (discrete or
continous) attibutes. Some attributes might be latent.

For example, you could cluster an electorate into Labour, Tory, Lib-Dem and Undecided, but this is not

a distributed representation since each person is described by a single 4-valued discrete variable. A dis-

tributed representation might be: (Tory, Single, Black, Female, 18-35 years old, City-dweller,

Liberal, Procedural). We might use such a representation to model voting preferences.

These attributes resemble factors, but may be discrete (and non-Gaussian), and may out-
number the observed dimensions (say voting preference). Such distributed representations
can be exponentially more efficient than clustering.



More Complex Unsupervised Learning Methods

• Nonlinear dimensionality reduction methods

• Independent components analysis (ICA)

• Hierarchical clustering

• Boltzmann machines

• Sigmoid belief networks

• Latent Dirichlet allocation

• Gaussian process latent variable models

• Hierarchical HMMs

• Factorial HMMs

• Dynamic Bayesian networks

• Nonlinear dynamical systems



Nonlinear Dimensionality Reduction

There are many ways of generalising PCA and FA models to deal with data which lies on a
nonlinear manifold:

• Principal curves

• Autoencoders

• Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)

• Density networks

• Stochastic Neighbour Embedding

• Multi-dimensional scaling (MDS)

• Isomap: http://web.mit.edu/cocosci/isomap/isomap.html

• Locally linear embedding (LLE): http://www.cs.toronto.edu/∼roweis/lle/

• Gaussian Process Latent Variable Models (GPLVM)

Unfortunately, we don’t have time to cover these methods in the course... except for GPLVM.



Blind Source Separation

Aka the cocktail party problem.

?

• Given auditory signals (from one or more receivers), recover the different sources of
sounds.

• Independent components analysis: assumes that sources are independent, and are non-
Gaussian.



Natural Scenes and Sounds
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Independent Components Analysis
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These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

• The ICA graphical model is identical to factor analysis:

xd =

K∑
k=1

Λdk yk + εd

with yk ∼ Py non-Gaussian.
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Differences:

•Well-posed even with K ≥ D (e.g., K = D = 2 above).

•With non-zero noise, MAP inference is non-linear, and the full posterior is non-Gaussian.

• This makes making exact inference and learning difficult for most Py.



Square, Noiseless Causal ICA

• The special case of K = D, and zero observation noise has been studied extensively
(standard infomax ICA, c.f. PCA):

x = Λy which implies y = Wx where W = Λ−1

where y are the independent components (factors), x are the observations, and W is the
unmixing matrix.

• The likelihood can be written in terms of W :

P (x|W ) = |W |
∏
k

Py([Wx]k︸ ︷︷ ︸
yk

)

where py is marginal probability distribution of factors.
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• The likelihood can be obtained by transforming the density of y to that of x. If F : y 7→ x
is a differentiable bijection, and if dy is a small neighbourhood around y, then

Px(x)dx = Py(y)dy = Py(F
−1(x))

∣∣∣∣dydx
∣∣∣∣ dx = Py(F

−1(x))
∣∣∇F−1

∣∣ dx



Infomax ICA

• Consider a feedforward model:

yi = Wix zi = fi(yi)

with a monotonic squashing function fi(−∞) = 0,
fi(+∞) = 1.
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• Infomax find filtering weights W maximizing the information carried by z about x:

argmax
W

I(x; z) = argmax
W

H(z)−H(z|x) = argmax
W

H(z)

Thus we just have to maximize entropy of z: make it as uniform as possible on [0, 1] (note
squashing function).

• But if data were generated from a square noiseless causal ICA then best we can do is if

zi = fi(yi) = cdfi(yi) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.

• Another view: redundancy reduction in the representation z of the data x.

argmax
W

H(z) = argmax
W

∑
i

H(zi)− I(z1, . . . , zD)

See: http://www.cnl.salk.edu/∼tony/ica.html (a bit out-of-date). MacKay (1996), Pearlmutter and Parra 1996, Cardoso

1997 for equivalence, Teh et al (2003) for an energy-based view.



Learning in ICA

• Log likelihood of data:

logP (x) = log |W | +
∑
i

logPy(Wix)

• Learning by gradient ascent:

∇W = W−T + g(y)xT g(y) =
∂ logPy(y)

∂y

• Better approach: natural gradient

∇W = W + g(y)yTW

(see MacKay 1996).

• Note: we can’t use EM in the square noiseless causal ICA model. Why?



Kurtosis

The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is.

K =
E((x− µ)4)

E((x− µ)2)2
− 3

where µ = E(x) is the mean of x.
Gaussian distributions have zero kurtosis.

Heavy tailed distributions have positive kur-
tosis (leptokurtic).

Light tailed distributions have negative kur-
tosis (platykurtic).

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer assump-
tions about generating distributions.



ICA and BSS

Applications:

• Separating auditory sources

• Analysis of EEG data

• Analysis of functional MRI data

• Natural scene analysis

• . . .

Extensions:

• Non-zero output noise – approximate posteriors and learning.

• Undercomplete (K < D) or overcomplete (K > D).

• Learning prior distributions (on y).

• Dynamical hidden models (on y).

• Learning number of sources.

• Time-varying mixing matrix.

• Nonparametric, kernel ICA.

• . . .



Blind Source Separation

?

• ICA solution to blind source separation assumes no dependence across time; still works
fine much of the time.

• Many algorithms: DCA, SOBI, JADE, . . .
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Natural Scenes

Olshausen & Field (1996)



Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may be
hidden, some may be visible (observed).

P (s|W,b) =
1

Z
exp

∑
ij

Wijsisj −
∑
i

bisi


where Z is the normalization constant (partition function).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV ,W,b) (“clamped phase”). This could
be done either exactly or (more usually) approximately using Gibbs sampling or loopy BP.

• The M step requires gradients w.r.t.Z, which can be computed by averages w.r.t. P (s|W,b)
(“unclamped phase”).

∇Wij = 〈sisj〉c − 〈sisj〉u



Learning in Boltzmann Machines

logP (sV sH|W,b) =
∑
ij

Wijsisj −
∑
i

bisi − logZ

with Z =
∑

s e
∑
ijWijsisj−

∑
i bisi

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
logP (sV sH|W,b)

〉
P (sH |sV )

Write 〈〉c (clamped) for expectations under P (s|sV ) (with delta function P (sV |sV )). Then

∇Wij =
∂

∂Wij

[∑
ijWij〈sisj〉c −

∑
i bi〈si〉c − logZ

]
= 〈sisj〉c −

∂

∂Wij
logZ

= 〈sisj〉c −
1

Z

∂

∂Wij

∑
s

e
∑
ijWijsisj−

∑
i bisi

= 〈sisj〉c −
∑

s

1

Z
e
∑
ijWijsisj−

∑
i bisisisj

= 〈sisj〉c −
∑

s

P (s|W,b)sisj = 〈sisj〉c − 〈sisj〉u

with 〈〉u (unclamped) an expectation under the current joint distribution.



Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables si ∈ {0, 1}.

P (s|W,b) =
∏
i

P (si|{sj}j<i,W,b)

P (si = 1|{sj}j<i,W,b) =
1

1 + exp{−
∑

j<iWijsj − bi}

A probabilistic version of sigmoid multilayer perceptrons
(“neural networks”).

Learning algorithm: a gradient version of EM

• E step involves computing averages w.r.t. P (sH|sV ,W,b). This could be done either
exactly or approximately using Gibbs sampling of mean field approximations.

• Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.



Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” discussed by the docu-
ments in the corpus.

Example: abstracts of papers from the Proceedings of the National Academy of Sciences
(PNAS).

Global climate change and mammalian species diversity in U.S. national parks

National parks and bioreserves are key conservation tools used to protect species and their habitats within the confines of
fixed political boundaries. This inflexibility may be their ”Achilles’ heel” as conservation tools in the face of emerging global-
scale environmental problems such as climate change. Global climate change, brought about by rising levels of greenhouse
gases, threatens to alter the geographic distribution of many habitats and their component species....

The influence of large-scale wind power on global climate

Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport
in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind
power at regional to global scales by using two general circulation models and several parameterizations of the interaction
of wind turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers

The relation between changes in modern glaciers, not including the ice sheets of Greenland and Antarctica, and their climatic
environment is investigated to shed light on paleoglacier evidence of past climate change and for projecting the effects of
future climate warming on cold regions of the world. Loss of glacier volume has been more or less continuous since the
19th century, but it is not a simple adjustment to the end of an ”anomalous” Little Ice Age....



Topic Modelling

Example topics discovered from PNAS abstracts (each topic represented in terms of the top
5 most common words in that topic).



Recap: Beta Distributions

Remember the Bayesian coin toss example.

P (H|q) = q P (T |q) = 1− q

The probability of a sequence of coin tosses is:

P (HHTT · · ·HT |q) = q#heads(1− q)#tails

A conjugate prior for q is the Beta distribution:

P (q) =
Γ(a + b)

Γ(a)Γ(b)
qa−1(1− q)b−1 a, b ≥ 0
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Dirichlet Distributions
Imagine a Bayesian dice throwing example.

P (1|q) = q1 P (2|q) = q2 P (3|q) = q3 P (4|q) = q4 P (5|q) = q5 P (6|q) = q6

with qi ≥ 0,
∑

i qi = 1. The probability of a sequence of dice throws is:

P (34156 · · · 12|q) =

6∏
i=1

q# face i
i

A conjugate prior for q is the Dirichlet distribution:

P (q) =
Γ(
∑

i ai)∏
i Γ(ai)

∏
i

qai−1
i qi ≥ 0,

∑
i qi = 1 ai ≥ 0



Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

topics k=1...K

document d=1...D

words i=1...nd

θd

zid

xid

φk

• For each document d:
Place a Dirichlet prior on the mixing proportions θd,

θd ∼ Dir(α, . . . , α)

– For each word i in document d:
Pick a topic,

zid ∼ Discrete(θd)

Pick a word given topic zid,

xid ∼ Discrete(φzid)

• Also place a prior over the topic parameters,

φk ∼ Dir(β, . . . , β)

Multiple mixture models, sharing the same set of components (topics).



Latent Dirichlet Allocation as Matrix Decomposition

Let Ndw be the number of times word w appears in document d, and Pdw is the probability
of word w appearing in document d.

p(N |P ) =
∏
dw

P
Ndw
dw likelihood term

Pdw =
∑
k

p(pick topic k)p(pick word w|k) =

K∑
k=1

θdkφkw

φkwPdw θdk= *

This decomposition is similar to PCA and factor analysis, except not Gaussian.



Latent Dirichlet Allocation

• Exact inference in latent Dirichlet allocation is intractable, and typically either variational
or Markov chain Monte Carlo approximations are deployed.

• Latent Dirichlet allocation is an example of a mixed membership model from statistics.

• Latent Dirichlet allocation has also been applied to computer vision, social network mod-
elling, natural language processing. . .

• Generalizations:

– Relaxing the bag-of-words assumption (e.g. a Markov model).
– Modelling changes in topics through time.
– Modelling correlations among occurrences of topics.
– Modelling authors, recipients, multiple corpora.
– Cross modal interactions (images and tags).
– Nonparametric generalizations.



Factorial Hidden Markov Models

• These are hidden Markov models with many state variables (i.e. a distributed represen-
tation of the state).

• Each state variable evolves independently.

• The state can capture many more bits of information about the sequence (linear in the
number of state variables).

• E step is usally intractable (due to explaining away in latent states).



Dynamic Bayesian Networks
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• Like factorial HMMs but with structured dependencies among latent states.



Hierarchical Hidden Markov Models

Note: above not a graphical model.

• High level HMMs “emit” low level HMMs, recursively.

• Examples: speech recognition (words emit phonemes, phonemes actual audio signals),
action recognition (playing football, running, dribbling, kicking, microactions).

• Factorial HMMs, hierarchical HMMs and dynamic Bayesian networks can be reparametrized
using straight HMM, but exponentially larger state space.



Hierarchical Clustering

Data D = {x(1), . . . , x(n)}
Initialise number of clusters c = n
Initialise Di = {x(i)} for i = 1, . . . , c
while c > 1 do

Find nearest pair of clusters Di and Dj
Merge Di ← Di ∪ Dj, Delete Dj, c← c− 1

end while

Distance Measures:
dmin(Di,Dj) = minx∈Di,x′∈Dj ‖x− x′‖ single-linkage
dmax(Di,Dj) = maxx∈Di,x′∈Dj ‖x− x′‖ complete-linkage
davg(Di,Dj) = 1

ninj

∑
x∈Di

∑
x′∈Dj ‖x− x′‖ average-linkage

dmean(Di,Dj) = ‖mi −mj‖ mean-linkage

Hierarchical clustering is very widely used, e.g. in bioinformatics, because it is often natural
to think of data points at multiple level of granularity, or as having been generated by an
evolutionary process.
There are probabilistic and Bayesian hierarchical clustering algorithms with proper proba-
bilistic semantics.



Gaussian Process Latent Variable Models

Recap: probabilistic PCA

yi|xi,Λ ∼ N (Λxi, β
−1I)

xi ∼ N (0, I)

Usually: compute posterior over X = [x1, . . . , xN ]>, maximizing likelihood over Λ.

Suppose we know the values of the latent X , then we can integrate out Λ (c.f. linear regres-
sion), giving a conditional probability of Y = [y1 . . . yN ]>:

Λ ∼ N (0, α−1I)

p(Y |X) ∼ |2πK|−
D
2 exp

(
−1

2
Tr[K−1Y Y >]

)
K = αXX> + βI

This is just D independent Gaussian processes, one for each dimension of Y ! Each Gaus-
sian process describes a mapping from latent space x to one dimension of y.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear di-
mensionality reduction.

But now dependence on X is complicated—instead of computing a posterior over X we
now maximize (the likelihood) over it (along with the hyperparameters too).



Gaussian Process Latent Variable Models

Some video demos...



Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for three (main) reasons:

• Distributions may have complicated forms (e.g. non-linearities in generative model).

• “Explaining away” causes coupling from observations
Observing the value of a child induces dependencies amongst its parents.

• Even with simple models, being Bayesian and computing the full posterior over both latent
variables and parameters
There is often strong coupling between latent variables and parameters.

y1
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y2

I

u u u yK

I

x

We can still work with such models by using approximate inference techniques to estimate
the latent variables.



Approximate Inference

• Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear approxima-
tions are particularly useful since Gaussian distributions are closed under linear transfor-
mations (e.g., EKF). Also Laplace’s approximation.

• Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by
a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

• Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q‖p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of q(H).

• Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form q(H) or with a set of locally consistent tractable forms by other means
(loopy belief propagation, expectation propagation).

• Recognition Models: Approximate the hidden variable posterior distribution using an ex-
plicit bottom-up recognition model/network.
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