Assignment 1
Unsupervised & Probabilistic Learning
Maneesh Sahani & Yee Whye Teh
Due: Monday 19 Oct, 2009

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS department. Please hand in all assignments at the beginning of lecture on the due date to the lecturer. Late assignments will be penalised. If you are unable to come to class, you can also hand in assignments to Rachel Howes in the Alexandra House 4th floor reception.

1. [10 points] Consistent beliefs. A friend (perhaps not for much longer) reports that he is willing to bet on the following beliefs about two events A and B, at least one of which must occur (i.e. $P(\neg A \land \neg B) = 0$):

 $b(A) = 0.5$
 $b(B|A) = 0.5$
 $b(A|B) = 0.5$

 (a) Show that these beliefs are inconsistent. [2 points]
 (b) Construct a Dutch Book matched to his beliefs. [8 points]

2. [28 points] Statistics and Distributions.
In the coming weeks we will be making extensive use of the following distributions, which you should know. For each one of the exponential family distributions listed below look up or calculate:

 (a) the conventional probability distribution or density function as appropriate,
 (b) the mean and variance in terms of the conventional parameters,
 (c) the standard exponential form of the distribution or density function,
 (d) the natural parameters in terms of the conventional parameters (i.e., the function $\phi(\theta)$), and the sufficient statistic function (i.e., $T(x)$).

The distributions to consider are:

 Binomial, Multinomial, Poisson, Beta, Dirichlet, Gaussian, Gamma

 [4 points each]

3. [27 points] Models for binary vectors. Consider a data set of binary (black and white) images. Each image is arranged into a vector of pixels by concatenating the columns of pixels in the image. The data set has N images $\{x^{(1)}, \ldots, x^{(N)}\}$ and each image has D pixels, where D is (number of rows \times number of columns) in the image. For example, image $x^{(n)}$ is a vector $(x^{(n)}_1, \ldots, x^{(n)}_D)$ where $x^{(n)}_d \in \{0, 1\}$ for all $n \in \{1, \ldots, N\}$ and $d \in \{1, \ldots, D\}$.

 (a) Explain why a multivariate Gaussian is not an appropriate model for this data set of images. [3 points]
Assume that the images were modelled as independently and identically distributed samples from a D-dimensional **multivariate Bernoulli distribution** with parameter vector \(p = (p_1, \ldots, p_D) \), which has the form

\[
P(x|p) = \prod_{d=1}^{D} p_d^{x_d}(1 - p_d)^{1-x_d}
\]

where both \(x \) and \(p \) are \(D \)-dimensional vectors.

(b) How many bits would it take on average to code this data set, using the optimal code for the specified distribution? [2 points]

(c) What is the equation for the maximum likelihood (ML) estimate of \(p \)? Note that you can solve for \(p \) directly. [5 points]

(d) Assuming independent Beta priors on the parameters \(p_d \)

\[
P(p_d) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p_d^{\alpha-1}(1 - p_d)^{\beta-1}
\]

and \(P(p) = \prod_{d} P(p_d) \) What is the maximum a posteriori (MAP) estimate of \(p \)? Hint: maximise the log posterior with respect to \(p \). [5 points]

Download the data set `binarydigits.txt` from the course website, which contains \(N = 100 \) images with \(D = 64 \) pixels each, in an \(N \times D \) matrix. These pixels can be displayed as \(8 \times 8 \) images by rearranging them. View them in Matlab by running `bindigit.m` (almost no Matlab knowledge required to do this).

(e) Write code to learn the ML parameters of a multivariate Bernoulli from this data set and display these parameters as an \(8 \times 8 \) image. Hand in your code and the learned parameter vector. (Matlab or Octave code is preferred, but C, Java or R are acceptable). [7 points]

(f) Modify your code to learn MAP parameters with \(\alpha = \beta = 3 \). What is the new learned parameter vector for this data set? Explain why this might be better or worse than the ML estimate. [5 points]

(a) Describe a real-world data set which you believe could be modelled using factor analysis. Argue why factor analysis is a sensible model for this data. What do you expect the factors to represent? How many factors do you think there would be? Are the linearity and Gaussianity assumptions reasonable, and if not, how would you modify the model? [5 points]

(b) Describe a real-world data set which you believe could be modelled using a mixture model. Argue why a mixture model is a sensible model for your real world data set. What do you expect the mixture components to represent? How many components (or clusters) do you think there would be? What parametric form would each component have? [5 points]

5. [15 points] Principal Components Analysis.

The conventional latent variable model for Probabilistic Principal Components Analysis has a standard normal latent \(y \) and an arbitrary **loading matrix** \(\Lambda \).

\[
p(y) = \mathcal{N}(0, I) \\
p(x|y) = \mathcal{N}(\Lambda y, \psi I)
\]
An alternative model would be to draw \(y \) from a normal with diagonal covariance (say \(\Upsilon \)), and then restrict \(\Lambda \) to be orthogonal:

\[
p(y) = \mathcal{N}(0, \Upsilon) ; \quad \Upsilon_{ij} = 0 \text{ for } i \neq j \\
p(x|y) = \mathcal{N}(\Lambda y, \psi I) ; \quad \Lambda^T \Lambda = I.
\]

(a) Show that this alternative model is equivalent to the standard one. [5 points]

(b) Derive the mean and covariance of \(p(y|x) \) within the alternative model in the PCA limit, \(\psi \to 0. \) [10 points]

6. [10 points] Linear Latent Models. We seek to model \(D \)-dimensional data vectors using a \(K \)-dimensional latent space, with a linear mapping between them.

(a) How many parameters need to be fit for each of two possible models: probabilistic principal components analysis (PPCA) and factor analysis (FA)? [Just count the raw parameters, don’t worry about accounting for degeneracies.] [4 points]

(b) Recall that the \(K \)-dimensional PCA subspace projection can be found by learning the weights of a linear auto-encoder network by gradient descent in the squared reconstruction error. Is the same true of FA if the uniquenesses (another term for the output noise variances \(\Psi_{dd} \)) are known? Explain, giving the reconstruction cost function if there is one. [3 points]

(c) What about if the uniquenesses are to be learnt too? [3 points]

BONUS QUESTION: please attempt the questions above before answering this one.

7. [Bonus: 10 points] Model selection. In the binary data model above, how would you calculate the (relative) probability of the three different models:

(a) all \(D \) components are generated from a Bernoulli distribution with \(p_d = 0.5 \)

(b) all \(D \) components are generated from Bernoulli distributions with unknown, but identical, \(p_d \)

(c) each component is Bernoulli distributed with separate, unknown \(p_d \)