
Assignment 2

Unsupervised & Probabilistic Learning

Maneesh Sahani & Yee Whye Teh

Due: Monday Nov 2, 2009

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS department.
Please hand in all assignments at the beginning of lecture on the due date to the lecturer. Late assignments
will be penalised. If you are unable to come to class, you can also hand in assignments to Rachel Howes
in the Alexandra House 4th floor reception.

Please attempt the first questions before the bonus ones.

1. [65 points] EM for Binary Data.

Consider the data set of binary (black and white) images used in the previous assignment. Each image
is arranged into a vector of pixels by concatenating the columns of pixels in the image. The data set
has N images {x(1), . . . , x(N)} and each image has D pixels, where D is (number of rows × number
of columns) in the image. For example, image x(n) is a vector (x(n)

1 , . . . , x
(n)
D ) where x(n)

d ∈ {0, 1} for
all n ∈ {1, . . . , N} and d ∈ {1, . . . , D}.

(a) Write down the likelihood for a model consisting of a mixture of K multivariate Bernoulli
distributions. Use the parameters π1, . . . , πK to denote the mixing proportions (0 ≤ πk ≤
1;

∑
k πk = 1) and arrange the K Bernoulli parameter vectors into a matrix P with elements pkd

denoting the probability that pixel d takes value 1 under mixture component k. [5 points]

Just like in a mixture of Gaussians we can think of this model as a latent variable model, with a
discrete hidden variable s(n) ∈ {1, . . . ,K} where P (s(n) = k|π) = πk.

(b) Write down the expression for the responsibility of mixture component k for data vector x(n),
i.e. rnk ≡ P (s(n) = k|x(n),π,P) [5 points]

(c) Implement the EM algorithm for a mixture of K multivariate Bernoullis. The algorithm should
take as input K, a matrix X containing the data set, and a number of iterations. The algorithm
should run for that number of iterations or until the log likelihood converges (does not increase
by more than a very small amount). Beware of numerical problems as likelihoods can get
very small, it is better to deal with log likelihoods. Also be careful with numerical problems
when computing responsibilities — it might be necessary to multiply the top and bottom of the
equation for responsibilities by some constant to avoid problems. Hand in code and a high level
explanation of what you algorithm does. [30 points]

(d) Run your algorithm on the data set for varying K = 2, 3, 4. Verify that the log likelihood
increases at each step of EM. Report the log likelihoods obtained (measured in bits) and display
the parameters found. [15 points]

(e) Comment on how well the algorithm works, whether it finds good clusters (look at the respon-
sibilities and try to interpret them), and how you might improve the model. [10 points]



2. [20 points] Modelling Data.

(a) Download the data file called geyser.txt from the course web site. This is a sequence of 295
consecutive measurements of two variables from Old Faithful geyser in Yellowstone National
Park: the duration of the current eruption in minutes (to nearest 0.1 minute), and the waiting
time until the next eruption in minutes (to nearest minute).
Examine the data by plotting the variables within and between consecutive time steps. E.g.
plot(geyser(1:end-1,1),geyser(2:end,1),’o’);. Discuss and justify based on your obser-
vations what kind of model might be most appropriate for this data set: e.g. a mixture of
Gaussians, a hidden Markov model, a linear dynamical system, etc. [10 points]

(b) Consider a data set consisting of the following string of 160 symbols from the alphabet {A, B, C}:

AABBBACABBBACAAAAAAAAABBBACAAAAABACAAAAAABBBBACAAAAAAAA
AAAABACABACAABBACAAABBBBACAAABACAAAABACAABACAAABBACAAAA
BBBBACABBACAAAAAABACABACAAABACAABBBACAAAABACABBACA

Look carefully at the above string. Having analysed the string, describe an HMM model for
it. Your description should include the number of states in the HMM, the transition matrix
including the values of the elements of the matrix, the emission matrix including the values of its
elements, and the intial state probabilities. You need to provide some description/justification
for how you arrived at these numbers. I am not expecting you to code the HMM algorithm—you
should be able to answer this question just by examining the sequence carefully. [10 points]

3. [15 points] Zero-temperature EM. In the automatic speech recognition community, HMMs
are sometimes trained by using the Viterbi algorithm instead of the forward–backward algorithm.
In other words, in the E step of EM (Baum–Welch), instead of computing the expected sufficient
statistics from the posterior distribution over hidden states: p(s1:T |x1:T , θ), the sufficient statistics
are computed using the single most probable hidden state sequence: s∗1:T = arg maxs1:T p(s1:T |x1:T , θ).

(a) Is this algorithm guaranteed to converge? To answer this you might want to consider the proof
for the EM algorithm and what happens if we constrain q(s) to put all its mass on one setting
of the hidden variables. Support your arguments. [10 points]

(b) If it converges, will it converge to a maximum of the likelihood? If not, will it oscillate? Support
your arguments. [5 points]

(c) [Bonus] Why do you think this question is labelled “Zero-temperature EM” Hint: think about
where temperature would appear in the the free-energy. [5 points]

4. [Bonus: 15 points] Nonlinear SSMs. Consider the following nonlinear system:

zt+1 = 0.9 zt −
z2
t−1

2(z2
t−1 + 1)

+ e

xt = zt + v

where e ∼ N(0, 1) and v ∼ N(0, 0.1). Using Matlab, generate 300 data points from this system
starting with z1 = z2 = 0.

(a) Write it as a nonlinear state-space model: i.e. using a state vector yt which depends only on the
previous state yt−1 and noise; and with xt depending on yt and noise. [10 points]

(b) With enough state variables, can you model the dynamics in the above system perfectly with a
linear dynamical system? Argue why or why not. [5 points]

http://www.gatsby.ucl.ac.uk/teaching/courses/ml1-2007/geyser.txt


5. [Bonus: 5 points] SSM identifiability. Fred says that if you give him a linear-Gaussian state-
space model he can convert it into an equivalent one with the same number of states but with the
covariance of the state-noise Q = I, the identity matrix. Is he right? Justify your answer.


