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What is Learning?

Finding structure (regularities, associations) in observations.
Predicting new observations. Choosing actions.



What is Learning?

Ideas related to learning appear in many fields:

• Scientific Method: epistemology, verification, experimental design, ...

• Statistics: theory of learning, data mining, learning and inference from data, ...

• Computer Science: AI, computer vision, information retrieval, ...

• Engineering: signal processing, system identification, adaptive and optimal control, infor-
mation theory, robotics, ...

• Cognitive Science: computational linguistics, philosophy of mind, ...

• Economics: decision theory, game theory, operational research ...

• Psychology: perception, movement control, reinforcement learning, mathematical psy-
chology...

• Computational Neuroscience: neuronal networks, neural information processing...



Different fields, Convergent ideas

• The same set of ideas and mathematical tools have emerged in many of these fields,
albeit with different emphases.

• Machine learning is an interdisciplinary field focusing on both the mathematical founda-
tions and practical applications of systems that learn, reason and act.

• The goal of this course: to introduce basic concepts, models and algorithms in machine
learning with particular emphasis on unsupervised learning.



Three Types of Learning

Imagine an organism or machine which experiences a series of sensory inputs:

x1, x2, x3, x4, . . .

Supervised learning: The machine is also given desired outputs y1, y2, . . ., and its goal is
to learn to produce the correct output given a new input.

Unsupervised learning: The goal of the machine is to build a model of x that can be used
for reasoning, decision making, predicting things, communicating etc.

Reinforcement learning: The machine can also produce actions a1, a2, . . . which affect the
state of the world, and receives rewards (or punishments) r1, r2, . . .. Its goal is to learn to
act in a way that maximises rewards in the long term.



Goals of Supervised Learning

Two main examples:

Classification:
The desired outputs yi are discrete class labels.
The goal is to classify new inputs correctly
(i.e. to generalize).
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Regression:
The desired outputs yi are continuous valued.
The goal is to predict the output accurately for new inputs.
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Goals of Unsupervised Learning

To build a model or find useful representations
of the data, for example:

• finding clusters

• dimensionality reduction

• finding good explanations (hidden
causes) of the data

• modeling the data density
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Uses of Unsupervised Learning

• structure discovery, science

• data compression

• outlier detection

• help classification

• make other learning tasks easier

• use as a theory of human learning and perception



Example data: Gene Expression



Example data: Handwritten Digits



Example data: Web Pages

Google Search: Unsupervised Learning http://www.google.com/search?q=Unsupervised+Learning&sourceid=fir...

1 of 2 06/10/04 15:44

  

Web    Images    Groups    News    Froogle    more »

 Search   Advanced Search
  Preferences    

 Web Results 1 - 10 of about 150,000 for Unsupervised Learning. (0.27 seconds) 

Mixture modelling, Clustering, Intrinsic classification ...
Mixture Modelling page. Welcome to David Dowe’s clustering, mixture modelling
and unsupervised learning page. Mixture modelling (or ... 
www.csse.monash.edu.au/~dld/mixture.modelling.page.html - 26k - 4 Oct 2004 - Cached - Similar pages

ACL’99 Workshop -- Unsupervised Learning in Natural Language ...
PROGRAM. ACL’99 Workshop Unsupervised Learning in Natural Language Processing.
University of Maryland June 21, 1999. Endorsed by SIGNLL ... 
www.ai.sri.com/~kehler/unsup-acl-99.html - 5k - Cached - Similar pages

Unsupervised learning and Clustering
cgm.cs.mcgill.ca/~soss/cs644/projects/wijhe/ - 1k - Cached - Similar pages

NIPS*98 Workshop - Integrating Supervised and Unsupervised ...
NIPS*98 Workshop ‘‘Integrating Supervised and Unsupervised Learning’’ Friday, December
4, 1998. ... 4:45-5:30, Theories of Unsupervised Learning and Missing Values. ... 
www-2.cs.cmu.edu/~mccallum/supunsup/ - 7k - Cached - Similar pages

NIPS Tutorial 1999
Probabilistic Models for Unsupervised Learning Tutorial presented at the
1999 NIPS Conference by Zoubin Ghahramani and Sam Roweis. ... 
www.gatsby.ucl.ac.uk/~zoubin/NIPStutorial.html - 4k - Cached - Similar pages

Gatsby Course: Unsupervised Learning : Homepage
Unsupervised Learning (Fall 2000). ... Syllabus (resources page): 10/10 1 -
Introduction to Unsupervised Learning Geoff project: (ps, pdf). ... 
www.gatsby.ucl.ac.uk/~quaid/course/ - 15k - Cached - Similar pages
[ More results from www.gatsby.ucl.ac.uk ]

[PDF] Unsupervised Learning of the Morphology of a Natural Language
File Format: PDF/Adobe Acrobat - View as HTML
Page 1. Page 2. Page 3. Page 4. Page 5. Page 6. Page 7. Page 8. Page 9. Page 10.
Page 11. Page 12. Page 13. Page 14. Page 15. Page 16. Page 17. Page 18. Page 19 ... 
acl.ldc.upenn.edu/J/J01/J01-2001.pdf - Similar pages

Unsupervised Learning - The MIT Press
... From Bradford Books: Unsupervised Learning Foundations of Neural Computation Edited
by Geoffrey Hinton and Terrence J. Sejnowski Since its founding in 1989 by ... 
mitpress.mit.edu/book-home.tcl?isbn=026258168X - 13k - Cached - Similar pages

[PS] Unsupervised Learning of Disambiguation Rules for Part of
File Format: Adobe PostScript - View as Text
Unsupervised Learning of Disambiguation Rules for Part of. Speech Tagging. Eric
Brill. 1. ... It is possible to use unsupervised learning to train stochastic. ... 
www.cs.jhu.edu/~brill/acl-wkshp.ps - Similar pages

The Unsupervised Learning Group (ULG) at UT Austin
The Unsupervised Learning Group (ULG). What ? The Unsupervised Learning Group
(ULG) is a group of graduate students from the Computer ... 
www.lans.ece.utexas.edu/ulg/ - 14k - Cached - Similar pages

Result Page: 1 2 3 4 5 6 7 8 9 10 Next

Unsupervised Learning

Categorisation
Clustering
Relations between pages



Why a statistical approach?

Our approach to learning will start with a model of how the data were produced:

P (data|parameters)

This is the generative model or likelihood.

• A probabilistic model of the data can be used to

– make inferences about missing inputs
– generate predictions/fantasies/imagery
– make decisions which minimise expected loss
– communicate the data in an efficient way

• Statistical modelling is equivalent to other views of learning:

– information theoretic: finding compact representations of the data
– physical analogies: minimising (free) energy of a corresponding statistical mechanical

system



Representing beliefs

Let’s use b(x) to represent the strength of belief in (plausibility of) proposition x.

0 ≤ b(x) ≤ 1
b(x) = 0 x is definitely not true
b(x) = 1 x is definitely true
b(x|y) strength of belief that x is true given that we know y is true

Cox Axioms (Desiderata):

• Strengths of belief (degrees of plausibility) are represented by real numbers

• Qualitative correspondence with common sense

• Consistency

– If a conclusion can be reasoned in more than one way, then every way should lead to
the same answer.

– Beliefs always take into account all relevant evidence.
– Equivalent states of knowledge are represented by equivalent plausibility assignments.

Consequence: Belief functions (e.g. b(x), b(x|y), b(x, y)) must satisfy the rules of probabil-
ity theory, including Bayes rule. (see Jaynes, Probability Theory: The Logic of Science)



The Dutch Book Theorem

Assume you are willing to accept bets with odds proportional to the strength of your beliefs.
That is, b(x) = 0.9 implies that you will accept a bet:

x at 1 : 9⇒
{
x is true win ≥ £1
x is false lose £9

Then, unless your beliefs satisfy the rules of probability theory, including Bayes rule, there
exists a set of simultaneous bets (called a “Dutch Book”) which you are willing to accept,
and for which you are guaranteed to lose money, no matter what the outcome.

E.g. suppose A ∩B = ∅, then b(A) = 0.3
b(B) = 0.2

b(A ∪B) = 0.6

⇒ accept the bets

 ¬A at 3 : 7
¬B at 2 : 8

A ∪B at 4 : 6


But then:

¬A ∩B ⇒ win + 3− 8 + 4 = −1
A ∩ ¬B ⇒ win − 7 + 2 + 4 = −1
¬A ∩ ¬B ⇒ win + 3 + 2− 6 = −1

The only way to guard against Dutch Books to to ensure that your beliefs are coherent: i.e.
satisfy the rules of probability.



Basic Rules of Probability

Probabilities are non-negative P (x) ≥ 0 ∀x.

Probabilities normalise:
∑

x∈X P (x) = 1 for distributions if x is a discrete variable and∫ +∞
−∞ p(x)dx = 1 for probability densities over continuous variables

The joint probability of x and y is: P (x, y).

The marginal probability of x is: P (x) =
∑

y P (x, y), assuming y is discrete.

The conditional probability of x given y is: P (x|y) = P (x, y)/P (y)

Bayes Rule:

P (x, y) = P (x)P (y|x) = P (y)P (x|y) ⇒ P (y|x) =
P (x|y)P (y)

P (x)

Warning: I will not be obsessively careful in my use of p and P for probability density and probability distribu-

tion. Should be obvious from context.



Information, Probability and Entropy

Information is the reduction of uncertainty. How do we measure uncertainty?

Some axioms (informal):

• if something is certain its uncertainty = 0

• uncertainty should be maximum if all choices are equally probable

• uncertainty (information) should add for independent sources

This leads to a discrete random variable X having uncertainty equal to the entropy function:

H(X) = −
∑
X=x

P (X = x) logP (X = x)

measured in bits (binary digits) if the base 2 logarithm is used or nats (natural digits) if the
natural (base e) logarithm is used.



Some Definitions and Intuitions
• Surprise (for event X = x): − logP (X = x)

• Entropy = average surpise: H(X) = −
∑

X=x P (X = x) log2 P (X = x)

• Conditional entropy

H(X|Y ) = −
∑
x

∑
y

P (x, y) log2 P (x|y)

• Mutual information

I(X ;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = H(X) + H(Y )−H(X, Y )

• Kullback-Leibler divergence (relative entropy)

KL(P (X)‖Q(X)) =
∑
x

P (x) log
P (x)

Q(x)

• Relation between Mutual information and KL: I(X ;Y ) = KL(P (X, Y )‖P (X)P (Y ))

• Independent random variables: P (X, Y ) = P (X)P (Y )

• Conditional independence X⊥⊥Y |Z (X conditionally independent of Y given Z)
means P (X, Y |Z) = P (X|Z)P (Y |Z) and P (X|Y, Z) = P (X|Z)



Shannon’s Source Coding Theorem

A discrete random variable X , distributed according to P (X) has entropy equal to:

H(X) = −
∑
x

P (x) logP (x)

Shannon’s source coding theorem: n independent samples of the random variable X ,
with entropy H(X), can be compressed into minimum expected code of length nL, where

H(X) ≤ L < H(X) +
1

n

If each symbol is given a code length l(x) = − log2Q(x) then the expected per-symbol
length LQ of the code is

H(X) + KL(P‖Q) ≤ LQ < H(X) + KL(P‖Q) +
1

n
,

where the relative-entropy or Kullback-Leibler divergence is

KL(P‖Q) =
∑
x

P (x) log
P (x)

Q(x)
≥ 0



Bayesian Learning
Apply the basic rules of probability to learning from data.

• Problem specification:

Data: D = {x1, . . . , xn} Models: M1,M2, etc. Parameters: θi (per model)

Prior probability of models: P (Mi).
Prior probabilities of model parameters: P (θi|Mi)
Model of data given parameters (likelihood model): P (x|θi,Mi)

• Data probability (likelihood)

P (D|θi,Mi) =

n∏
j=1

P (xj|θi,Mi) ≡ L(θi)

(provided the data are independently and identically distributed (iid).)

• Parameter learning (posterior):

P (θi|D,Mi) =
P (D|θi,Mi)P (θi|Mi)

P (D|Mi)
; P (D|Mi) =

∫
dθi P (D|θi,Mi)P (θ|Mi)

P (D|Mi) is called the marginal likelihood or evidence for Mi. It is proportional to the
posterior probability modelMi being the one that generated the data.

• Model selection:
P (Mi|D) =

P (D|Mi)P (Mi)

P (D)



Bayesian Learning: A coin toss example

Coin toss: One parameter q — the probability of obtaining heads
So our space of models is the set of distributions over q ∈ [0, 1].

Learner A believes modelMA: all values of q are equally plausible;
Learner B believes modelMB: more plausible that the coin is “fair” (q ≈ 0.5) than “biased”.
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A: α1 = α2 = 1.0 B: α1 = α2 = 4.0

Both prior beliefs can be described by the Beta distribution:

p(q|α1, α2) =
q(α1−1)(1− q)(α2−1)

B(α1, α2)
= Beta(q|α1, α2)



Bayesian Learning: The coin toss (cont)

Now we observe a toss. Two possible outcomes:

p(H|q) = q p(T|q) = 1− q

Suppose our single coin toss comes out heads

The probability of the observed data (likelihood) is:

p(H|q) = q

Using Bayes Rule, we multiply the prior, p(q) by the likelihood and renormalise to get the
posterior probability:

p(q|H) =
p(q)p(H|q)
p(H)

∝ q Beta(q|α1, α2)

∝ q q(α1−1)(1− q)(α2−1) = Beta(q|α1 + 1, α2)



Bayesian Learning: The coin toss (cont)
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Bayesian Learning: The coin toss (cont)

What about multiple tosses? Suppose we observe D = { H H T H T T }:

p({ H H T H T T }|q) = qq(1− q)q(1− q)(1− q) = q3(1− q)3

This is still straightforward:

p(q|D) =
p(q)p(D|q)
p(D)

∝ q3(1− q)3 Beta(q|α1, α2)

∝ Beta(q|α1 + 3, α2 + 3)
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Conjugate priors

Updating the prior to form the posterior was particularly easy in these examples. This is
because we used a conjugate prior for an exponential family likelihood.

Exponential family distributions take the form:

P (x|θ) = g(θ)f (x)eφ(θ)TT(x)

with g(θ) the normalising constant. Given n iid observations,

P ({xi}|θ) =
∏
i

P (xi|θ) = g(θ)ne
φ(θ)T

(∑
iT(xi)

)∏
i

f (xi)

Thus, if the prior takes the conjugate form

P (θ) = F (τ , ν)g(θ)νeφ(θ)Tτ

with F (τ , ν) the normaliser, then the posterior is

P (θ|{xi}) ∝ P ({xi}|θ)P (θ) ∝ g(θ)ν+ne
φ(θ)T

(
τ+
∑
iT(xi)

)
with the normaliser given by F

(
τ +

∑
iT(xi), ν + n

)
.



Conjugate priors

The posterior given an exponential family likelihood and conjugate prior is:

P (θ|{xi}) = F
(
τ +

∑
iT(xi), ν + n

)
g(θ)ν+n exp

[
φ(θ)T

(
τ +

∑
iT(xi)

)]
Here,

φ(θ) is the vector of natural parameters∑
iT(xi) is the vector of sufficient statistics

τ are pseudo-observations which define the prior
ν is the scale of the prior (need not be an integer)

As new data come in, each one increments the sufficient statistics vector and the scale to
define the posterior.

The prior appears to be based on “pseudo-observations”, but:

1. This is different to applying Bayes’ rule. No prior! Sometimes we can take a uniform prior
(say on [0, 1] for q), but for unbounded θ, there may be no equivalent.

2. A valid conjugate prior might have non-integral ν or impossible τ , with no likelihood equiv-
alent.



Conjugacy in the coin flip
Distributions are not always written in their natural exponential form.
The Bernoulli distribution (a single coin flip) with parameter q and observation x ∈ {0, 1},
can be written:

P (x|q) = qx(1− q)(1−x)

= ex log q+(1−x) log(1−q)

= elog(1−q)+x log(q/(1−q))

= (1− q)elog(q/(1−q))x

So the natural parameter is the log odds log(q/(1− q)), and the sufficient stats (for multiple
tosses) is the number of heads.
The conjugate prior is

P (q) = F (τ, ν) (1− q)νelog(q/(1−q))τ

= F (τ, ν) (1− q)νeτ log q−τ log(1−q)

= F (τ, ν) (1− q)ν−τqτ

which has the form of the Beta distribution⇒ F (τ, ν) = 1/B(τ + 1, ν − τ + 1).
In general, then, the posterior will be P (q|{xi}) = Beta(α1, α2), with

α1 = 1 + τ +
∑

i xi α2 = 1 + (ν + n)−
(
τ +

∑
i xi

)
If we observe a head, we add 1 to the sufficient statistic

∑
xi, and also 1 to the count n.

This increments α1. If we observe a tail we add 1 to n, but not to
∑
xi, incrementing α2.



Bayesian Coins II

We have seen how to update posteriors within each model. To study the choice of model,
consider two more extreme models: “fair” and “bent”. A priori, we may think that “fair” is
more probable, eg:

p(fair) = 0.8, p(bent) = 0.2

For the bent coin, we assume all parameter values are equally likely, whilst the fair coin has
a fixed probability:
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We make 10 tosses, and get: D = (T H T H T T T T T T).



Bayesian Coins II

Which model should we prefer a posteriori (i.e. after seeing the data)?

The evidence for the fair model is:

P (D|fair) = (1/2)10 ≈ 0.001

and for the bent model is:

P (D|bent) =

∫
dq P (D|q, bent)p(q|bent) =

∫
dq q2(1− q)8 = B(3, 9) ≈ 0.002

Thus, the posterior for the models, by Bayes rule:

P (fair|D) ∝ 0.0008, P (bent|D) ∝ 0.0004,

ie, a two-thirds probability that the coin is fair.

How do we make predictions? Could choose the fair model (model selection).
Or could weight the predictions from each model by their probability (model averaging).
Probability of H at next toss is:

P (H|D) = P (H|D, fair)P (fair|D) + P (H|D, bent)P (bent|D) =
2

3
× 1

2
+

1

3
× 3

12
=

5

12
.



Parameter Learning

If an agent is learning parameters, it could report different aspects of the posterior (or likeli-
hood).

• Bayesian Learning: Assumes a prior over the model parameters. Computes the poste-
rior distribution of the parameters: P (θ|D).

• Maximum a Posteriori (MAP) Learning: Assumes a prior over the model parameters
P (θ). Finds a parameter setting that maximises the posterior: P (θ|D)∝P (θ)P (D|θ).

• Maximum Likelihood (ML) Learning: Does not assume a prior over the model parame-
ters. Finds a parameter setting that maximises the likelihood function: P (D|θ).

Choosing between these and other alternatives may be a matter of definition, of goals, or of
practicality

In practice (outside the exponential family), the Bayesian ideal may be computationally chal-
lenging, and may need to be approximated at best.

We will return to the Bayesian formulation in a while. For the next few weeks we will look at
ML and MAP learning in more complex models.



Simple Statistical Modelling: modelling correlations

Y 

Y 1 

2 

Assume:

• we have a data set D = {x1, . . . ,xN}
• each data point is a vector of D features:
xi = [xi1 . . . xiD]

• the data points are i.i.d. (independent and identi-
cally distributed).

One of the simplest forms of unsupervised learning: model the mean of the data and the
correlations between the D features in the data.

We can use a multivariate Gaussian model:

p(x|µ,Σ) = N (µ,Σ) = |2πΣ|−
1
2 exp

{
−1

2
(x− µ)>Σ−1(x− µ)

}



ML Estimation of a Gaussian

Data set D = {x1, . . . ,xN}, likelihood: p(D|µ,Σ) =

N∏
n=1

p(xn|µ,Σ)

Goal: find µ and Σ that maximise likelihood⇔ maximise log likelihood:

` = log

N∏
n=1

p(xn|µ,Σ) =
∑
n

log p(xn|µ,Σ)

= −N
2

log |2πΣ| − 1

2

∑
n

(xn − µ)>Σ−1(xn − µ)

Note: equivalently, minimise −`, which is quadratic in µ

Procedure: take derivatives and set to zero:

∂`

∂µ
= 0 ⇒ µ̂ =

1

N

∑
n

xn (sample mean)

∂`

∂Σ
= 0 ⇒ Σ̂ =

1

N

∑
n

(xn − µ̂)(xn − µ̂)> (sample covariance)



Gaussian Derivatives

∂(−`)
∂µ

=
∂

∂µ

[
N

2
log |2πΣ| + 1

2

∑
n

(xn − µ)>Σ−1(xn − µ)

]
=

1

2

∑
n

∂

∂µ

[
(xn − µ)>Σ−1(xn − µ)

]
=

1

2

∑
n

∂

∂µ

[
xn
>Σ−1xn + µ>Σ−1µ− 2µTΣ−1xn

]
=

1

2

∑
n

∂

∂µ

[
µ>Σ−1µ

]
− 2

∂

∂µ

[
µTΣ−1xn

]
=

1

2

∑
n

[
2Σ−1µ− 2Σ−1xn

]
= NΣ−1µ− Σ−1

∑
n

xn

= 0⇒ µ̂=
1

N

∑
n

xn



Gaussian Derivatives

∂(−`)
∂Σ−1

=
∂

∂Σ−1

[
N

2
log |2πΣ| + 1

2

∑
n

(xn − µ)>Σ−1(xn − µ)

]
=

∂

∂Σ−1

[
N

2
log |2πI|

]
− ∂

∂Σ−1

[
N

2
log |Σ−1|

]
+

1

2

∑
n

∂

∂Σ−1

[
(xn − µ)>Σ−1(xn − µ)

]
= −N

2
ΣT +

1

2

∑
n

(xn − µ)(xn − µ)>

= 0⇒ Σ̂=
1

N

∑
n

(xn − µ)(xn − µ)>



Note

Y 

Y 1 

2 

modelling correlations
m

maximising likelihood of a Gaussian model
m

minimising a squared error cost function
m

minimizing data coding cost in bits (assuming Gaussian distributed)



Multivariate Linear Regression

The relationship between variables can also be modelled as a conditional distribution.

Y 

Y 1 

2 

• data D = {(x1, y1) . . . , (xN , yN)}
• each xi (yi) is a vector of Dx (Dy) features,

• yi is conditionally independent of all else, given xi.

One of the simplest forms of supervised learning: model y as a linear function of x, with
Gaussian noise.

p(y|x,W,Σy) = |2πΣy|−
1
2 exp

{
−1

2
(y −Wx)>Σ−1

y (y −Wx)

}



Multivariate Linear Regression
ML estimates are obtained by maximising the (conditional) likelihood, as before:

` =
∑
i
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(∑
i

xix
T
i

)−1∑
i

yix
T
i



Posterior estimation

Let yi be scalar (so that W is a row vector) and write w for the column vector of weights.

A conjugate prior for w is

P (w|A) = N
(
0,A−1

)
Then the log posterior on w is

logP (w|D,A, σy)= logP (D|w,A, σy) + logP (w|A, σy)− logP (D|A, σy)

= −1

2
wTAw − 1

2

∑
i

(yi −wTxi)
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y + const
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2
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= log N
(
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∑
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−2
y ,Σw

)



Gaussians for Regression

• Modelling the conditional P (y|x).

• If we also model P (x), then learning is indistinguishable from unsupervised. In particular
if P (x) is Gaussian, and P (y|x) is linear-Gaussian, then x, y are jointly Gaussian.

• Generalised Linear Models (GLMs) generalise to non-Gaussian, exponential-family dis-
tributions and to non-linear link functons.

yi ∼ ExpFam(µi,φ)

g(µi) = wTxi

Posterior, or even ML, estimation is not possible in closed form⇒ iterative methods such
as gradient ascent or iteratively re-weighted least squares (IRLS).
A warning to fMRIers: SPM uses GLM for “general” (not -ised) linear model; which is just linear.

• These models: Gaussians, Linear-Gaussian Regression and GLMs are important build-
ing blocks for the more sophisticated models we will develop later.

• Gaussian models are also used for regression in Gaussian Process Models. We’ll see
these later too.



Three limitations of the multivariate Gaussian model

•What about higher order statistical structure in the data?

⇒ nonlinear and hierarchical models

•What happens if there are outliers?

⇒ other noise models

• There are D(D + 1)/2 parameters in the multivariate Gaussian model.
What if D is very large?

⇒ dimensionality reduction



End Notes

It is very important that you understand all the material in the following cribsheet:
http://www.gatsby.ucl.ac.uk/teaching/courses/ul-2006/cribsheet.pdf

The following notes by Sam Roweis are quite useful:

Matrix identities and matrix derivatives:
http://www.cs.toronto.edu/∼roweis/notes/matrixid.pdf

Gaussian identities:
http://www.cs.toronto.edu/∼roweis/notes/gaussid.pdf

Here is a useful statistics / pattern recognition glossary:
http://research.microsoft.com/∼minka/statlearn/glossary/

Tom Minka’s in-depth notes on matrix algebra:
http://research.microsoft.com/∼minka/papers/matrix/



End Notes
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