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Bayesian Linear Regression
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Given observed data D = {X = [x1 . . . xN ], Y = [y1 . . . yN ]}, the posterior on w is:
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The Bayesian predictive distribution for y′|x′ is obtained by integrating out w:

p(y′|x′,D) =

∫
dw p(y′|w, x′)p(w|D)

=

∫
dwN

(
y′|wTx′, σ2

)
N (w|µw,Σw)

= N (µT
wx′, x′

T
Σwx′ + σ2).



Alternative View of Linear Regression
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yi ∼ N (w!xi, σ
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i = 1, . . . , N

Integrating out w, the joint distribution of y1, . . . , yN given x1, . . . , xN is Gaussian.
The means and covariances are:

E[yi] = E[wTxi] = 0Txi = 0

E[(yi − 0)2] = E[(xT
i w)(wTxi)] + σ2 = τ 2xT
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Y T|X ∼ N (0N , τ
2XTX + σ2IN)



Alternative View of Linear Regression

Now, include the test input vector x′ and test output y′:[
Y T

y′

]∣∣∣∣X, x′ ∼ N ([0N
0

]
,

[
τ 2XTX + σ2I τ 2XTx′

τ 2x′TX τ 2x′Tx′ + σ2

])
We can find y′|Y by the standard multivariate Gaussian result:[

a
b

]
∼ N
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0
0

]
,

[
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])
⇒ b|a ∼ N

(
CTA−1a, B − CTA−1C

)
So

y′|Y,X, x′∼ N
(
τ 2x′

T
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T
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T
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Same answer as when we integrated posterior over w to obtain predictive distribution over y′.

Similarly, evidence P (Y |X) is just probability under Gaussian, and reduces to previous ex-
pression.

The point: Bayesian regression can be derived from a joint, parameter-free distribution on
the outputs conditioned on the inputs.



Nonlinear Regression
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w ∼ N (0, τ2I)

σ2

yi ∼ N (w!φ(xi), σ2)

i = 1, . . . , N

What if we introduce a nonlinear mapping x 7→ φ(x)? Each element of φ(x) is a (nonlinear)
feature extracted from x. May be many more features than elements on x.

The regression function f (x) = wTφ(x) is nonlinear, but outputs Y still jointly Gaussian!

Y T|X ∼ N (0N , τ
2ΦTΦ + σ2IN)

where the ith column of matrix Φ is φ(xi).

Proceeding as before, the predictive distribution over y′ on a test input x′ is:

y′|Y,X, x′ ∼ N
(
τ 2φ(x′)TΦK−1Y T, τ 2φ(x′)Tφ(x′) + σ2 − τ 4φ(x)TΦK−1ΦTφ(x′)

)
K = τ 2ΦTΦ + σ2I



The Covariance Kernel

Y T|X ∼ N
(
0N , τ

2ΦTΦ + σ2IN
)

The covariance of the output vector Y plays a central role in the development of the theory
of Gaussian processes.

Define the covariance kernel function K : X × X → R such that if x, x′ ∈ X are two input
vectors with corresponding outputs y, y′, then

K(x, x′) = Cov[y, y′] = E[yy′]− E[y]E[y′]

In the nonlinear regression example we have K(x, x′) = τ 2φ(x)Tφ(x′) + σ2δx=x′.

The covariance kernel has two properties:

• Symmetric: K(x, x′) = K(x′, x) for all x, x′.

• Positive semidefinite: the matrix [K(xi, xj)] formed by any finite set of input vectors
x1, . . . , xN is positive semidefinite.

Theorem: A covariance kernel K : X × X → R is symmetric and positive semidefinite if
and only if there is a feature map φ : X→ H such that

K(x, x′) = φ(x)Tφ(x′)

The feature space H can potentially be infinite dimensional.



Gaussian Process Regression

For non-linear regression, all operations depended on K(x, x′) rather than explicitly on φ(x).

So we can define the joint in terms of K implicitly using a (potentially infinite-dimensional)
feature map φ(x).

Y |X,K ∼ N (0N , K(X,X))

where the i, j entry in the covariance matrix K(X,X) is K(xi, xj).

This is called the kernel trick.

Prediction: compute the predictive distribution of y′ conditioned on Y :

y′|x′, X, Y,K ∼ N (K(x′, X)K(X,X)−1Y T︸ ︷︷ ︸
mean

, K(x′, x′)−K(x′, X)K(X,X)−1K(X, x′)︸ ︷︷ ︸
variance

)

Evidence: this is just the Gaussian likelihood:

P (Y |X,K) = |2πK(X,X)|−
1
2e−

1
2Y K(X,X)−1Y T

Evidence optimisation: the covariance kernel K often has parameters, and these can be
optimized by gradient ascent in logP (Y |X,K).



The Gaussian Process

A Gaussian process (GP) is a collection of random variables, any finite number of which
have (consistent) Gaussian distributions.

In our regression setting, corresponding to each input vector x we have an output f (x).
Given X = [x1, . . . , xN ], the joint distribution of the outputs F = [f (x1), . . . , f (xN)] is:

F |X,K ∼ N (0, K(X,X))

Thus the random function f (x) (as a collection of random variables, one f (x) for each x) is
a Gaussian process.

In general, a Gaussian process is parametrized by a mean function m(x) and covariance
kernel K(x, x′), and we write

f (·) ∼ GP(m(·), K(·, ·))

Posterior Gaussian process: on observing X and F , the conditional joint distribution of
F ′ = [f (x′1), . . . , f (x′M)] on another set of input vectors x′1, . . . , x

′
M is still Gaussian:

F ′|X ′, X, F,K ∼ N (K(X ′, X)K(X,X)−1FT, K(X ′, X ′)−K(X ′, X)K(X,X)−1K(X,X ′))

thus the posterior over functions f (·)|X,F is still a Gaussian process!



Regression with Gaussian Processes

We wish to model the joint distribution of outputs y1, . . . , yN given inputs x1, . . . , xN .
Use a GP prior over functions:

f (·) ∼ GP(0, K(·, ·))

Usually, instead of treating yi as direct observation of the function value f (xi), we add Gaus-
sian observation noise:

yi|xi, f (·) ∼ N (f (xi), σ
2)

Evidence: again this is just a multivariate Gaussian likelihood,

P (Y |X) = |2π(K(X,X) + σ2I)|−
1
2e−

1
2Y (K(X,X)+σ2I)−1Y T

Posterior: the posterior function is still a GP,

f (·)|X, Y ∼ GP(K(·, X)(K(X,X) + σ2I)−1Y T, K(·, ·)−K(·, X)(K(X,X) + σ2I)−1K(X, ·))

Prediction: the predictive distribution is just posterior plus observation noise:

y′|X, Y, x′ ∼ N (E[f (x′)|X, Y ],Var[f (x′)|X, Y ] + σ2)

Evidence Optimisation: we can do this by gradient ascent in logP (Y |X).



Samples from a Gaussian Process

We can draw sample functions from a GP by fixing a set of input vectors x1, . . . , xN , and
drawing a sample f (x1), . . . , f (xN) from the corresponding multivariate Gaussian. This can
then be plotted.

Below we plot samples from an example prior and corresponding posterior GP.

Another approach is to

• sample f (x1) first,

• then f (x2)|f (x1),

• and generally f (xn)|f (x1), . . . , f (xn−1) for n = 1, 2, . . ..



Sample from a 2D Gaussian Process



Covariance Kernels

Examples of covariance kernels:

• Polynomial:

K(x, x′) = (1 + xTx′)m m = 1, 2, . . .

• Squared-exponential:

K(x, x′) = θ2e
−‖x−x′‖2

2η2

• Periodic:

K(x, x′) = θ2e
−2 sin2(π(x−x′)/τ)

η2

• Rational Quadratic:

K(x, x′) =

(
1 +
‖x− x′‖2

2αη2

)−α
α > 0



Covariance Kernels

If K1 and K2 are covariance kernels, then so are:

• Rescaling: αK1 for α > 0.

• Addition: K1 + K2

• Elementwise product: K1K2

• Mapping: K1(φ(x), φ(x′)) for some function φ.

We say a covariance kernel is translation-invariant if

K(x, x′) = h(x− x′)

A GP with a translation-invariant covariance kernel is stationary: if f (·) ∼ GP(0, K), then
so is f (· − x) ∼ GP(0, K) for each x.

We say a covariance kernel is radial if

K(x, x′) = h(‖x− x′‖)

A GP with a radial covariance kernel is stationary with respect to translations, rotations, and
reflections of the input space.



Nonparametric Bayesian Models and Occam’s Razor

Overparameterised models can overfit.

But the Bayesian treatment integrates parameters out, so they cannot be adjusted to overfit
the data! In the GP, the parameter is the function f (x) which can be infinite-dimensional.

The Gaussian process is an example of a larger class of nonparametric Bayesian models.

• Infinite number of parameters.

• Often constructed as the infinite limit of a nested family of finite models (sometimes equiv-
alent to infinite model averaging).

• Parameters integrated out, so effective number of parameters to overfit is zero or small
(hyperparameters).

• No need for model selection. Bayesian posterior on parameters will concentrate on “sub-
model” with largest integral automatically.

• No explicit need for Occam’s razor, validation or added regularisation penalty.



End Notes

Automatic relevance determination appeared in MacKay (1993) Bayesian Methods for Back-
propagation Networks and Neal (1993) Bayesian Learning for Neural Networks.
Gaussian processes can also be used in classification and latent variable models. We will
consider classification in the second half of course.

Many of the figures have been copied from a Gaussian process tutorial by Carl Rasmussen
(MLSS 2007) at http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07/CarlERasmussen

An excellent text book on Gaussian processes is Gaussian processes for Machine Learning
by Rasmussen and Williams, available online at http://www.gaussianprocess.org/gpml/

The original paper on Gaussian process latent variable models is by Neil Lawrence (NIPS
2004) at http://www.cs.man.ac.uk/∼neill/



End Notes
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