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Integrals in Statistical Modelling

e Parameter estimation

AN

0 = argmax/dy PY|0)P(X|Y,0)

0
(or using EM)

9" = argmax / dY P(Y|X,60°)log P(X,)|6)
0

e Prediction
p(aD,m) = / 40 p(6|D, m)p(z|9, D, m)

e Model selection or weighting (by marginal likelihood)
p(Dlm) = [ db p(8]m)p(DIO,m)

These integrals are often intractable:

e Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models = numerical integration.

e Computational intractability: Numerical integral (or sum if )) or 6 are discrete) may be
exponential in data or model size.



Examples of Intractability

e Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computa-
tions are exponential in number of data points

P(X1, ..., Xy) = /d@p HZp X;|s;,0)p(s;|0)

=1 s;

-3y S‘/dep p(xilsi, 0)p(si|0)

S1 82

e Computing the conditional probability of a variable in a very large multiply connected
directed graphical model:

p(.CUZ"Xj — CL) = Z (37@7an _ a)/p( CL)

all settings ofy\{%]}

e Computing the hidden state distribution in a general nonlinear dynamical system

p(Yelxi, ..., X7) o /p(Yzﬁ’Yt—l)p<xt|Yt)p<Yt—1’xla o X)Xt 1y - X7|YE )Y



Distributed models

‘ >

// ‘}

In the FHMM, moralisation puts simultaneous states s§”, s§2), 353) into a single clique.

e [ state variables, K values = sums over K*¥ terms.
e Factorial prior # Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form. To see how they
work, we need to review the free-energy interpretation of EM.



The Free Energy for a Latent Variable Model

Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:

£0(6) = log P(X]9) = log / P(Y, X|0)dY,
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The Free Energy for a Latent Variable Model
Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
((6) = log P(X6) = o | P(Y,X|6)dy

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

100) = o [ a)” %’ofj Dy [qyos” %’of; ) 4y Fig,0)
Now,

/ ) log - %’(’;j’e) 1y — / a(V)log P, X0) dY / log ()

z/q(y)logP(y,X ) dY + Hlq|

where H|q| is the entropy of ¢())).



The Free Energy for a Latent Variable Model
Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
((6) = log P(X6) = o | P(Y,X|6)dy

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

_ Py, X10) 5 PV, X|0) . def
((0) —1Og/q(37) ) dy > /q(y)l 5 o) 4y < Flq,0).

/ ) log - %’(’;jw) 1y — / a(V)log P, X0) dY / log ()

Now,

z/q(y)logP(y,X ) dY + Hlq|

where H|q| is the entropy of ¢())).
So:
F(gq,0) = (log P(¥, X10)) (3 + Hlg]
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The E and M steps of EM

The log likelihood is bounded below by the variational free energy:

F(q,0) = (log P(Y, X|0)) ,» + Hldl,

EM alternates between:
E step: optimise F(q, §) wrt distribution over hidden variables holding parameters fixed:

¢ (Y) = arg(m)ax F(q(y),0" V) = P(y|x, 0" ")
q(Y

M step: maximise F(q, ¢/) wrt parameters holding hidden distribution fixed:

0" = argmax F(¢"()),0) = argmax (log P(Y, X10)) w)y)
0 0



EM as Coordinate Ascent in F

T (Q,e)
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EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

g(@(kf—l))
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EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

e The E step brings the free energy to the likelihood.
e The M-step maximises the free energy wrt 6.
e F < /by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that (%) £ 9~ iff F increases, then the overall EM iteration
will step to a new value of @ iff the likelihood increases.



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P()|X, 6) is computationally intractable?



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P()|X, 6) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps.



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P()|X, 6) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps. For the E-step we could:

e Parameterise ¢ = ¢,()) and take a gradient step in p.

e Assume some simplified form for ¢, usually factored: ¢ = [ [, ¢;()V;) where ); partition )/,
and maximise within this form.



Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P()|X, 6) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps. For the E-step we could:

e Parameterise ¢ = ¢,()) and take a gradient step in p.

e Assume some simplified form for ¢, usually factored: ¢ = [ [, ¢;()V;) where ); partition )/,
and maximise within this form.

In both cases, we assume ¢ € O, and optimise within this class:

VE step: maximise F(q, 6) wrt restricted latent distribution given parameters:

¢ (Y) := argmax F(q(Y), 9“"”).
q(Y)eQ

M step: unchanged

0" .= argmax F(¢'")()),0) = argmax / ¢ (V) logp(Y, X[6)dY,
0 0

This maximises a lower bound on the log likelihood.
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What do we lose?

What does restricting g to Q cost us?

e Recall that the free-energy is bounded above by Jensen:
F(q,0) < (™)
Thus, as long as every step increases JF, convergence is still guaranteed.

e But, since P(YV| X, 0%%)) may not lie in Q, we no longer saturate the bound after the E-step.
Thus, the likelihood may not increase on each full EM step.

/(91 F(q™® =1 < F(q™. 6% < (W),
( ) Eﬁep ( ) M step ( ) Jensen (0%

e Thus, we may not converge to a maximum of £.

The hope is that by increasing a lower bound on ¢ we will find a decent solution.
[Note that if P(Y|X, M) € Q, then OM- is a fixed point of the variational algorithm.]



KL divergence

Recall that
F(q,0) = (log P(X, V|0)) 3 + Hlg|
= (log P(X[0) + log P(V|X,0)) 3 — (log q(V)) )
= (log P<X‘9)>q(y) — KLg|| P(Y]|X,0)].
Thus,

E step maximise F(q, ) wrt the distribution over latents, given parameters:

¢M(Y) = argmax F(q(¥),0" V).
q(Y)eQ

IS equivalent to:
E step minimise KL|q||p(Y|X, #)] wrt distribution over latents, given parameters:

q())
V|, 00=1)

q<k)(y) = argmin/q(y) logp( d)

q(Y)eQ

So, in each E step, the algorithm is trying to find the best approximation to P()|X) in Q.

This is related to ideas in information geometry.



Factored Variational E-step

The most common form of variational approximation partitions )/ into disjoint sets )/; with

Q={q|q¥) = H%(%)}

In this case the E-step is itself iterative:
(Factored VE step);: maximise F(q, #) wrt ¢;()V;) given other ¢; and parameters:

M) = argmax F ()] a;(0), 041,
¢ (Vi it

The ¢;s can be updated iteratively until convergence before moving on to the M-step. Al-
ternatively, we can make a single pass over all g¢; (starting from values at the last step) and
then perform an M-step. Each VE step increases JF, so convergence is still guaranteed.
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Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

(HQJ Vi), 0 ) <logP(2€ V|t >H . [HQJ Vi }

~ [y qi<yi><1ogP<X,y\9k—1>>H#Z%( y + i+ )
J#i



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

]__( H (V) e(k—l)): <log P(X, yle(k_1)>>n.qj(yj) +H [H C]j(yj)}

- / 4y, qz-(yi)<log P(Xx, y\9<k—1>)> ot Hlg] + > Hig)

[z 4509 oy

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

Lo (fo-)-



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

]__( H (V) e(k—l)): <log P(X, yle(k_1)>>n.qj(yj) +H [H C]j(yj)}

— | dY; :(¥){log P(x, y|g*~Y i -
[ 9 a) 1oz P2, oy M+ Ml

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

5
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Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

]__( H (V) (9(14—1)): <log P(X, yle(k_1)>>n.qj(yj) +H [H C]j(yj)}

— | dY; :(¥){log P(x, y|g*~Y i -
[ 9 a) 1oz P2, oy M+ Ml

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

5
—(F+ A /i—l)):lo PX,yH(k_l) —logq;(V;) — 1+ A
5%( ( ] (e P "0 < loga()

=0) = (V) ocexp(log P(X,Y]0*Y
(=0) (Vi) < 5 P | )>Hj7é7lqj<y.7)



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

]__( H (V) (9(14—1)): <log P(X, yle(k_1)>>n.qj(yj) +H [H C]j(yj)}

_ a: (V) (k=1) . Hig.
[ 9 a) 1oz P2, o+ M8+ M

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of ¢;):

5
—(F+ A /i—l)):lo PX,yH(k_l) —logq;(V;) — 1+ A
5%( ( ] (e P "0 < loga()

=0) = () o exp(log P(X,Y]|0"
(=0) 4i(Yi) p< 5 P | )>Hj7é7iqj<y7)

In general, this depends only on the expected sufficient statistics under ¢;. Thus, once again,
we don’t actually need the entire distributions, just the relevant expectations.



Mean-field Approximations

If V; = v, (i.e., g is factored over all variables) then the variational technique is often called a
“mean field” approximation.

Suppose P(X,)) is log-linear, e.g. the Boltzmann machine:

P(X,) ——eXp(ZVV”S 5J+st)

with some s; € ) and others observed.

Expectations wrt a fully factored ¢ distribute over all s; € Y
o PLY, Py, = 52 Wi oy, + St

(where ¢; for s; € X' is a delta function on observed value).

Thus, we can update each g; in turn given the means of the others. Each variable is seeing
the mean field imposed by its neighbours. We update these fields until they all agree.



Mean-field FHMM

g (") oc exp < log P(syy’, x1;T>>

- ~()
// o

Il

—‘(Wll,t/)

= exp <Z Z log P(s}"|si" 1) + Z log P(XtIS%:M)>
m t t

X exp [<log P(s}) \st, )>

1

i)

Q?L(St

m! + <1Og P(Sg—li—l’b?’l )> m! + <logp(xt/‘81}’:M)> [Tq™

qt’—

The mean-field approach to the FHMM with
51 T H q"(s;")

yields a variant of the usual forward-backward
algorithm.  Coupling between the different
chains only takes place through the joint out-
put distribution. Each update depends only on
the immediate neighbours.

II 4"

—(m/ ")

/



Structured Variational Approximations

q()) need not be completely factorized.

For example, suppose you can partition )/ into sets )4, and ), such that computing the ex-
pected sufficient statistics under ¢();) and ¢()%) is tractable.
Then ¢()) = q(V1)q(d%s) is tractable.

If you have a graphical model, you may want to factorize ¢()’) into a product of trees, which
are tractable distributions.




.’{/

Stuctured FHMM

\

log P(siiy', 1.1

Z log P(s]"|si" 1) + Z log P(Xt’Stl:M)>
t t

¥ 1685+ 3 on Plaels ) v

The most natural structured approximation in
the FHMM is to factor each chain from the oth-

ers
q(siy’) =] [ a"(s7p)
m

Updates within each chain are then found by
a forward-backward algorithm, with a modified
“likelihood” term.

)
qum(srf?T)

[Tq™
—\m/

tl

—\m,

(log POyl ™)) 11 g omy
/ t

-m



Variational Approximations and Graphical Models |

Let q(Y) = 11; ¢:(%).
Variational approximation maximises F:

Flq) = / a(V) log p(V, X)dY — / a(V) log ¢()dY

Focusing on one term, ¢;, we can write this as:

Flqj) = / ¢;(Y;) Qog p(Y, X)), () dV; + / q;(V;)log q;(Y;)dY; + const

Where <.>_‘Qj(yj) denotes averaging w.r.t. ¢;();) for all i = j

Optimum occurs when: |

5 5) = 7 o (o8P, X))oy,



Variational Approximations and Graphical Models Il

Optimum occurs when:

1

q¢;(Yj) = - P (log p(V, X)) g )

Assume graphical model: p(Y, X) = Hip(Xz'|pa¢)

log ¢;(V;) = <Zlogp(X@-|pa¢>>ﬁq‘ oy TGOSt
i I\

— <1ogp(yj|paj)>ﬁqj(yj) + Z <1ogp(Xk\pak)>ﬁqj(yj) + const

This defines messages that get passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)



Variational Approximations to Bayesian Learning

logp(X) = log/ p(X y\e p(@) dY db

379)

0) d) deé

A
—
—

=

=

S

5

03

’U
PQ

Constrain ¢ € 9 s.t. ¢(V,0) = q())q(0).

This results in the variational Bayesian EM algorithm.



Variational Bayesian Learning

Lower Bounding the Marginal Likelihood

Let the hidden latent variables be ), data X and the parameters 6.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s inequality:

log P(X) = log/dde P(X,),0) ||m
P(X,),6)

QY. 0)
P(X,),0)

QY. 6)

The saturating Q(),0) = P(),0|X) is almost always intractable.
Use a simpler, factorised approximation (), 0) = Qy())Qg(0):

P(X,),8)
Qy(Y)Qe(0)

- 1og/dyd9 Q,0)

> /dde Q(V,0)log

log P(X) > /dyd@ Qy(Y)Qe(0)log
= F(Qy()),Qe(8), X).

Maximize this lower bound. The resulting value is the approximation to the evidence.



Variational Bayesian Learning ...

Maximizing this lower bound, F, leads to EM-like updates:

Qy(Y) o< exp (log P(V,X|0)) ), ) E —like step

Qp(0) o< P(0)exp (log P(V,X|0)) () M —like step

Maximizing JF is equivalent to minimizing KL-divergence between the approximate posterior,
Q(0)Q()) and the true posterior, P(0,Y|X).

log P(X) — F(Qy(Y),Qe(0),X) =
P(X,),0)

g P(X) — [ 446 Qy()Q0(6) s S -

Qy(YV)Qa(0)
P(Y,0/X)

= KL(Q||P)

/ 4 48 Qy(Y)Q(6) log



Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

e Condition (1). The joint probability over variables is in the exponential family:
P(Y,X|0) = f(V,X) g(0)exp {¢(0) u(Y, X)}

where ¢(0) is the vector of natural parameters, u are sufficient statistics
e Condition (2). The prior over parameters is conjugate to this joint probability:

P8, v) = hin,v) g(0)" exp {$(6) v/}

where 1 and v are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:
e 17: number of pseudo-observations

e v: values of pseudo-observations



Conjugate-Exponential examples
In the CE family:

e Gaussian mixtures

e factor analysis, probabilistic PCA

e hidden Markov models and factorial HMMs

e linear dynamical systems and switching models

e discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial and others.

Not in the CE family:

e Boltzmann machines, MRFs (no simple conjugacy)
e |ogistic regression (no simple conjugacy)
e sigmoid belief networks (not exponential)

e independent components analysis (not exponential)

Note: one can often approximate these models with models in the CE family.



A Useful Result

Given an iid data set X = (&}, ... &},), if the model is CE then:

(a) Qp(0) is also conjugate, i.e.
Qo(0) = h(7,v)g(8)" exp {p(0) '}

wheren=n+nandv =v + > 1u(Y, X).

(b) Qy(Y) = []—; Qy.();) is of the same form as in the E step of regular EM, but using
pseudo parameters computed by averaging over (Qy(0)

Qy, (Vi) < f(Vi, X exp{qb u(y;, X } P(Yi| X, ( )

KEY points:

(a) the approximate parameter posterior is of the same form as the prior, so it is easily
summarized in terms of two sets of hyperparameters, n and v;

(b) the approximate hidden variable posterior, averaging over all parameters, is of the same
form as the hidden variable posterior for a single setting of the parameters, so again, it is
easily computed using the usual methods.



The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize p(@|X, m) w.r.t. 8
E Step: compute

¢ Y) = py)x, 0"
M Step:

e<t+1>=argmax/q§f“><y> los p(V, X, 8) dY
0

Variational Bayesian EM

Goal: lower bound p(X|m)
VB-E Step: compute

A = pylx, ")
VB-M Step:

A(6) = exp [ S0, .04y

Properties:

e Reduces to the EM algorithm if g9(0) = 6(60 — 0™).

e f,, increases monotonically, and incorporates the model complexity penalty.

e Analytical parameter distributions (but not constrained to be Gaussian).

e \VB-E step has same complexity as corresponding E step.

e We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the VB-E

step of VB-EM, but using expected natural parameters, ¢.




Variational Bayes: History of Models Treated

e multilayer perceptrons (Hinton & van Camp, 1993)

e mixture of experts (Waterhouse, MacKay & Robinson, 1996)

e hidden Markov models (MacKay, 1995)

e other work by Jaakkola, Jordan, Barber, Bishop, Tipping, etc

Examples of Variational Learning of Model Structure

e mixtures of factor analysers (Ghahramani & Beal, 1999)

e mixtures of Gaussians (Attias, 1999)

e independent components analysis (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)
e principal components analysis (Bishop, 1999)

e linear dynamical systems (Ghahramani & Beal, 2000)

e mixture of experts (Ueda & Ghahramani, 2000)

e discrete graphical models (Beal & Ghahramani, 2002)

e VIBES software for conjugate-exponential graphs (Winn, 2003)



ARD for unsupervised learning

A idea similar to supervised ARD can be used with Variational Bayesian methods to learn
the dimensionality of a latent space. Consider factor analysis:

x~N(Ay, V)  y~N(0,])
with a prior
A~ N (0,0;'T)
The VB free energy is a function of the data, Qy()), Qa(A) and a:
F(Qy(Y), Qa(A), X, a) = (log P(X, YA, W) + log P(Alax) +log P()) ) +HIQy]+H[Qa]

Optimising this wrt the distributions and « in turn (like EM) causes some «; to diverge,
restricting the effective dimensionality of y.



ARD for unsupervised learning
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