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Integrals in Statistical Modelling

• Parameter estimation

θ̂ = argmax
θ

∫
dY P (Y|θ)P (X|Y , θ)

(or using EM)

θnew = argmax
θ

∫
dY P (Y|X , θold) logP (X ,Y|θ)

• Prediction
p(x|D,m) =

∫
dθ p(θ|D,m)p(x|θ,D,m)

• Model selection or weighting (by marginal likelihood)

p(D|m) =

∫
dθ p(θ|m)p(D|θ,m)

These integrals are often intractable:

• Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian
models⇒ numerical integration.

• Computational intractability: Numerical integral (or sum if Y or θ are discrete) may be
exponential in data or model size.



Examples of Intractability

• Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computa-
tions are exponential in number of data points

p(x1, . . . , xN) =

∫
dθ p(θ)

N∏
i=1

∑
si

p(xi|si, θ)p(si|θ)

=
∑
s1

∑
s2

. . .
∑
sN

∫
dθ p(θ)

N∏
i=1

p(xi|si, θ)p(si|θ)

• Computing the conditional probability of a variable in a very large multiply connected
directed graphical model:

p(xi|Xj = a) =
∑

all settings of y\{i,j}

p(xi, y, Xj = a)/p(Xj = a)

• Computing the hidden state distribution in a general nonlinear dynamical system

p(yt|x1, . . . , xT ) ∝
∫
p(yt|yt−1)p(xt|yt)p(yt−1|x1, . . . , xt−1)p(xt+1, . . . , xT |yt)dyt−1



Distributed models
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In the FHMM, moralisation puts simultaneous states s(1)
t , s

(2)
t , s

(3)
t into a single clique.

•M state variables, K values⇒ sums over K2M terms.

• Factorial prior 6⇒ Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form. To see how they
work, we need to review the free-energy interpretation of EM.



The Free Energy for a Latent Variable Model

Observed data X = {xi}; Latent variables Y = {yi}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

`(θ) = logP (X|θ) = log

∫
P (Y ,X|θ)dY ,

Any distribution, q(Y), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

`(θ) = log

∫
q(Y)

P (Y ,X|θ)

q(Y)
dY ≥

∫
q(Y) log

P (Y ,X|θ)

q(Y)
dY def

= F(q, θ).

Now, ∫
q(Y) log

P (Y ,X|θ)

q(Y)
dY =

∫
q(Y) logP (Y ,X|θ) dY −

∫
q(Y) log q(Y) dY

=

∫
q(Y) logP (Y ,X|θ) dY + H[q],

where H[q] is the entropy of q(Y).
So:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q]
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The E and M steps of EM

The log likelihood is bounded below by the variational free energy:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q],

EM alternates between:

E step: optimise F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Y) := argmax
q(Y)

F
(
q(Y), θ(k−1)

)
= P (Y|X , θ(k−1))

M step: maximise F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ
〈logP (Y ,X|θ)〉q(k)(Y)
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EM as Coordinate Ascent in F



EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

`
(
θ(k−1)

)
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)
)
,

• The E step brings the free energy to the likelihood.

• The M-step maximises the free energy wrt θ.

• F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.
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Variational Approximations to the EM algorithm

What if finding expected sufficient stats under P (Y|X , θ) is computationally intractable?

In the generalised EM algorithm, we argued that intractable maximisations could be re-
placed by gradient M-steps. For the E-step we could:

• Parameterise q = qρ(Y) and take a gradient step in ρ.

• Assume some simplified form for q, usually factored: q =
∏

i qi(Yi) where Yi partition Y ,
and maximise within this form.

In both cases, we assume q ∈ Q, and optimise within this class:

VE step: maximise F(q, θ) wrt restricted latent distribution given parameters:

q(k)(Y) := argmax
q(Y)∈Q

F
(
q(Y), θ(k−1)

)
.

M step: unchanged

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ

∫
q(k)(Y) log p(Y ,X|θ)dY ,

This maximises a lower bound on the log likelihood.
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What do we lose?

What does restricting q to Q cost us?

• Recall that the free-energy is bounded above by Jensen:

F(q, θ) ≤ `(θML)

Thus, as long as every step increases F , convergence is still guaranteed.

• But, since P (Y|X , θ(k)) may not lie inQ, we no longer saturate the bound after the E-step.
Thus, the likelihood may not increase on each full EM step.

`
(
θ(k−1)

) /∖
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)
)
,

• Thus, we may not converge to a maximum of `.

The hope is that by increasing a lower bound on ` we will find a decent solution.
[Note that if P (Y|X , θML) ∈ Q, then θML is a fixed point of the variational algorithm.]
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KL divergence

Recall that

F(q, θ) = 〈logP (X ,Y|θ)〉q(Y) + H[q]

= 〈logP (X|θ) + logP (Y|X , θ)〉q(Y) − 〈log q(Y)〉q(Y)

= 〈logP (X|θ)〉q(Y) − KL[q‖P (Y|X , θ)].

Thus,

E step maximise F(q, θ) wrt the distribution over latents, given parameters:

q(k)(Y) := argmax
q(Y)∈Q

F
(
q(Y), θ(k−1)

)
.

is equivalent to:

E step minimise KL[q‖p(Y|X , θ)] wrt distribution over latents, given parameters:

q(k)(Y) := argmin
q(Y)∈Q

∫
q(Y) log

q(Y)

p(Y|X , θ(k−1))
dY

So, in each E step, the algorithm is trying to find the best approximation to P (Y|X ) in Q.

This is related to ideas in information geometry.



Factored Variational E-step

The most common form of variational approximation partitions Y into disjoint sets Yi with

Q =
{
q
∣∣ q(Y) =

∏
i

qi(Yi)
}
.

In this case the E-step is itself iterative:

(Factored VE step)i: maximise F(q, θ) wrt qi(Yi) given other qj and parameters:

q
(k)
i (Yi) := argmax

qi(Yi)
F
(
qi(Yi)

∏
j 6=i

qj(Yj), θ(k−1)
)
.

The qis can be updated iteratively until convergence before moving on to the M-step. Al-
ternatively, we can make a single pass over all qi (starting from values at the last step) and
then perform an M-step. Each VE step increases F , so convergence is still guaranteed.



Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

F
(∏

j

qj(Yj), θ(k−1)
)

=
〈

logP (X ,Y|θ(k−1))
〉∏

j qj(Yj)
+ H

[∏
j

qj(Yj)
]

=

∫
dYi qi(Yi)

〈
logP (X ,Y|θ(k−1))

〉∏
j 6=i qj(Yj)

+ H[qi] +
∑
j 6=i

H[qj]

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of qi):

δ

δqi

(
F + λ

(∫
qi − 1

))
=
〈

logP (X ,Y|θ(k−1))
〉∏

j 6=i qj(Yj)
− log qi(Yi)− 1 + λ

(= 0) ⇒ qi(Yi) ∝ exp
〈

logP (X ,Y|θ(k−1))
〉∏

j 6=i qj(Yj)

In general, this depends only on the expected sufficient statistics under qj. Thus, once again,
we don’t actually need the entire distributions, just the relevant expectations.
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Mean-field Approximations

If Yi = yi (i.e., q is factored over all variables) then the variational technique is often called a
“mean field” approximation.

Suppose P (X ,Y) is log-linear, e.g. the Boltzmann machine:

P (X ,Y) =
1

Z
exp
(∑

ij

Wijsisj +
∑
i

bisi

)
with some si ∈ Y and others observed.

Expectations wrt a fully factored q distribute over all si ∈ Y

〈logP (X ,Y)〉∏ qi
=
∑
ij

Wij〈si〉qi〈sj〉qj +
∑
i

bi〈si〉qi

(where qi for si ∈ X is a delta function on observed value).

Thus, we can update each qi in turn given the means of the others. Each variable is seeing
the mean field imposed by its neighbours. We update these fields until they all agree.



Mean-field FHMM
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The mean-field approach to the FHMM with

q(s1:M
1:T ) =

∏
m,t

qmt (smt )

yields a variant of the usual forward-backward
algorithm. Coupling between the different
chains only takes place through the joint out-
put distribution. Each update depends only on
the immediate neighbours.

qm
′

t′ (sm
′

t′ ) ∝ exp

〈
logP (s1:M

1:T , x1:T )

〉
∏

¬(m′,t′)
qmt (smt )

= exp

〈∑
m

∑
t

logP (smt |smt−1) +
∑
t

logP (xt|s1:M
t )

〉
∏

¬(m′,t′)
qmt

∝ exp

[〈
logP (sm

′
t′ |sm

′
t′−1)

〉
qm
′

t′−1

+
〈

logP (sm
′

t+1′|sm
′

t′ )
〉
qm
′

t′+1

+
〈
logP (xt′|s1:M

t′ )
〉∏
¬m

qm
t′

]



Structured Variational Approximations

q(Y) need not be completely factorized.

For example, suppose you can partition Y into sets Y1 and Y2 such that computing the ex-
pected sufficient statistics under q(Y1) and q(Y2) is tractable.
Then q(Y) = q(Y1)q(Y2) is tractable.

If you have a graphical model, you may want to factorize q(Y) into a product of trees, which
are tractable distributions.
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Stuctured FHMM
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The most natural structured approximation in
the FHMM is to factor each chain from the oth-
ers

q(s1:M
1:T ) =

∏
m

qm(sm1:T )

Updates within each chain are then found by
a forward-backward algorithm, with a modified
“likelihood” term.

qm
′
(sm

′
1:T ) ∝ exp

〈
logP (s1:M

1:T , x1:T )

〉
∏
¬m′

qm(sm1:T )

= exp

〈∑
m

∑
t

logP (smt |smt−1) +
∑
t

logP (xt|s1:M
t )

〉
∏
¬m′

qm

∝ exp

[∑
t

logP (sm
′

t |sm
′

t−1) +
∑
t

〈
logP (xt′|s1:M

t′ )
〉 ∏
¬m′

qm(sm
t′ )

]

=
∏
t

P (sm
′

t |sm
′

t−1)
∏
t

e
〈logP (xt′|s

1:M
t′ )〉 ∏

¬m′
qm(sm

t′ )



Variational Approximations and Graphical Models I

Let q(Y) =
∏

i qi(Yi).

Variational approximation maximises F :

F(q) =

∫
q(Y) log p(Y ,X )dY −

∫
q(Y) log q(Y)dY

Focusing on one term, qj, we can write this as:

F(qj) =

∫
qj(Yj) 〈log p(Y ,X )〉¬qj(Yj) dYj +

∫
qj(Yj) log qj(Yj)dYj + const

Where 〈·〉¬qj(Yj) denotes averaging w.r.t. qi(Yi) for all i 6= j

Optimum occurs when:

q∗j (Yj) =
1

Z
exp 〈log p(Y ,X )〉¬qj(Yj)



Variational Approximations and Graphical Models II

Optimum occurs when:

q∗j (Yj) =
1

Z
exp 〈log p(Y ,X )〉¬qj(Yj)

Assume graphical model: p(Y ,X ) =
∏

i p(Xi|pai)

x1

x2

x3

x4

x5

log q∗j (Yj) =
〈∑

i

log p(Xi|pai)
〉
¬qj(Yj)

+ const

=
〈
log p(Yj|paj)

〉
¬qj(Yj)

+
∑
k∈chj

〈log p(Xk|pak)〉¬qj(Yj) + const

This defines messages that get passed between nodes in the graph. Each node receives
messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)



Variational Approximations to Bayesian Learning

log p(X ) = log

∫ ∫
p(X ,Y|θ)p(θ) dY dθ

≥
∫ ∫

q(Y ,θ) log
p(X ,Y ,θ)

q(Y ,θ)
dY dθ

Constrain q ∈ Q s.t. q(Y ,θ) = q(Y)q(θ).

This results in the variational Bayesian EM algorithm.



Variational Bayesian Learning
Lower Bounding the Marginal Likelihood

Let the hidden latent variables be Y , data X and the parameters θ.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen’s inequality:

logP (X ) = log

∫
dY dθ P (X ,Y ,θ) ||m

= log

∫
dY dθ Q(Y ,θ)

P (X ,Y ,θ)

Q(Y ,θ)

≥
∫
dY dθ Q(Y ,θ) log

P (X ,Y ,θ)

Q(Y ,θ)
.

The saturating Q(Y ,θ) = P (Y ,θ|X ) is almost always intractable.
Use a simpler, factorised approximation Q(Y ,θ) = QY(Y)Qθ(θ):

logP (X ) ≥
∫
dY dθ QY(Y)Qθ(θ) log

P (X ,Y ,θ)

QY(Y)Qθ(θ)
= F(QY(Y), Qθ(θ),X ).

Maximize this lower bound. The resulting value is the approximation to the evidence.



Variational Bayesian Learning . . .

Maximizing this lower bound, F , leads to EM-like updates:

Q∗Y(Y) ∝ exp 〈logP (Y ,X|θ)〉Qθ(θ) E−like step

Q∗θ(θ) ∝ P (θ) exp 〈logP (Y ,X|θ)〉QY(Y) M−like step

MaximizingF is equivalent to minimizing KL-divergence between the approximate posterior,
Q(θ)Q(Y) and the true posterior, P (θ,Y|X ).

logP (X )−F(QY(Y), Qθ(θ),X ) =

logP (X )−
∫
dY dθ QY(Y)Qθ(θ) log

P (X ,Y ,θ)

QY(Y)Qθ(θ)
=∫

dY dθ QY(Y)Qθ(θ) log
QY(Y)Qθ(θ)

P (Y ,θ|X )
= KL(Q||P )



Conjugate-Exponential models

Let’s focus on conjugate-exponential (CE) models, which satisfy (1) and (2):

• Condition (1). The joint probability over variables is in the exponential family:

P (Y ,X|θ) = f (Y ,X ) g(θ) exp
{
φ(θ)>u(Y ,X )

}
where φ(θ) is the vector of natural parameters, u are sufficient statistics

• Condition (2). The prior over parameters is conjugate to this joint probability:

P (θ|η,ν) = h(η,ν) g(θ)η exp
{
φ(θ)>ν

}
where η and ν are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:

• η: number of pseudo-observations

• ν: values of pseudo-observations



Conjugate-Exponential examples
In the CE family:

• Gaussian mixtures

• factor analysis, probabilistic PCA

• hidden Markov models and factorial HMMs

• linear dynamical systems and switching models

• discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial and others.

Not in the CE family:

• Boltzmann machines, MRFs (no simple conjugacy)

• logistic regression (no simple conjugacy)

• sigmoid belief networks (not exponential)

• independent components analysis (not exponential)

Note: one can often approximate these models with models in the CE family.



A Useful Result

Given an iid data set X = (X1, . . .Xn), if the model is CE then:

(a) Qθ(θ) is also conjugate, i.e.

Qθ(θ) = h(η̃, ν̃)g(θ)η̃ exp
{
φ(θ)>ν̃

}
where η̃ = η + n and ν̃ = ν +

∑
i u(Yi,Xi).

(b) QY(Y) =
∏n

i=1QYi(Yi) is of the same form as in the E step of regular EM, but using
pseudo parameters computed by averaging over Qθ(θ)

QYi(Yi) ∝ f (Yi,Xi) exp
{
φ(θ)>u(Yi,Xi)

}
= P (Yi|Xi,φ(θ))

KEY points:

(a) the approximate parameter posterior is of the same form as the prior, so it is easily
summarized in terms of two sets of hyperparameters, η̃ and ν̃;

(b) the approximate hidden variable posterior, averaging over all parameters, is of the same
form as the hidden variable posterior for a single setting of the parameters, so again, it is
easily computed using the usual methods.



The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize p(θ|X ,m) w.r.t. θ

E Step: compute

q
(t+1)
Y (Y) = p(Y|X ,θ(t))

M Step:

θ(t+1)=argmax
θ

∫
q

(t+1)
Y (Y) log p(Y ,X ,θ) dY

Variational Bayesian EM

Goal: lower bound p(X|m)

VB-E Step: compute

q
(t+1)
Y (Y) = p(Y|X , φ̄(t)

)

VB-M Step:

q
(t+1)
θ (θ) = exp

[∫
q

(t+1)
Y (Y) log p(Y ,X ,θ) dY

]
Properties:

• Reduces to the EM algorithm if qθ(θ) = δ(θ − θ∗).

• Fm increases monotonically, and incorporates the model complexity penalty.

• Analytical parameter distributions (but not constrained to be Gaussian).

• VB-E step has same complexity as corresponding E step.

•We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the VB-E
step of VB-EM, but using expected natural parameters, φ̄.



Variational Bayes: History of Models Treated

• multilayer perceptrons (Hinton & van Camp, 1993)

• mixture of experts (Waterhouse, MacKay & Robinson, 1996)

• hidden Markov models (MacKay, 1995)

• other work by Jaakkola, Jordan, Barber, Bishop, Tipping, etc

Examples of Variational Learning of Model Structure

• mixtures of factor analysers (Ghahramani & Beal, 1999)

• mixtures of Gaussians (Attias, 1999)

• independent components analysis (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)

• principal components analysis (Bishop, 1999)

• linear dynamical systems (Ghahramani & Beal, 2000)

• mixture of experts (Ueda & Ghahramani, 2000)

• discrete graphical models (Beal & Ghahramani, 2002)

• VIBES software for conjugate-exponential graphs (Winn, 2003)



ARD for unsupervised learning

A idea similar to supervised ARD can be used with Variational Bayesian methods to learn
the dimensionality of a latent space. Consider factor analysis:

x ∼ N (Λy,Ψ) y ∼ N (0, I)

with a prior

Λi ∼ N
(
0, α−1

i I
)

The VB free energy is a function of the data, QY(Y), QΛ(Λ) and α:

F(QY(Y), QΛ(Λ),X ,α) =
〈

logP (X ,Y|Λ,Ψ) + logP (Λ|α) + logP (Ψ)
〉
QYQΛ

+H[QY ]+H[QΛ]

Optimising this wrt the distributions and α in turn (like EM) causes some αi to diverge,
restricting the effective dimensionality of y.



ARD for unsupervised learning
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