Probabilistic & Unsupervised Learning

Variational EM and Variational Bayesian Learning

Yee Whye Teh

ywteh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit University College London

Term 1, Autumn 2010

Integrals in Statistical Modelling

Parameter estimation

$$\hat{ heta} = \operatorname*{argmax}_{ heta} \int d\mathcal{Y} \; P(\mathcal{Y}| heta) P(\mathcal{X}|\mathcal{Y}, heta)$$

(or using EM)

$$heta^{\mathsf{new}} = \operatorname*{argmax}_{ heta} \int d\mathcal{Y} \; P(\mathcal{Y}|\mathcal{X}, heta^{\mathsf{old}}) \log P(\mathcal{X}, \mathcal{Y}| heta)$$

Prediction

$$p(x|\mathcal{D}, m) = \int d\theta \ p(\theta|\mathcal{D}, m) p(x|\theta, \mathcal{D}, m)$$

Model selection or weighting (by marginal likelihood)

$$p(\mathcal{D}|m) = \int d\theta \ p(\theta|m)p(\mathcal{D}|\theta, m)$$

These integrals are often intractable:

- Analytic intractability: integrals may not have closed form in non-linear, non-Gaussian models ⇒ numerical integration.
- Computational intractability: Numerical integral (or sum if \mathcal{Y} or θ are discrete) may be exponential in data or model size.

Examples of Intractability

 Bayesian marginal likelihood/model evidence for Mixture of Gaussians: exact computations are exponential in number of data points

$$p(\mathbf{x}_1, \dots, \mathbf{x}_N) = \int d\theta \ p(\theta) \prod_{i=1}^N \sum_{s_i} p(\mathbf{x}_i | s_i, \theta) p(s_i | \theta)$$
$$= \sum_{s_1} \sum_{s_2} \dots \sum_{s_N} \int d\theta \ p(\theta) \prod_{i=1}^N p(\mathbf{x}_i | s_i, \theta) p(s_i | \theta)$$

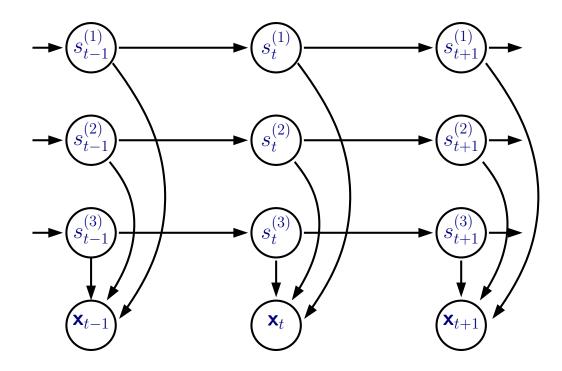
 Computing the conditional probability of a variable in a very large multiply connected directed graphical model:

$$p(x_i|X_j=a) = \sum_{\text{all settings of } \mathbf{y}\backslash\{i,j\}} p(x_i,\mathbf{y},X_j=a)/p(X_j=a)$$

Computing the hidden state distribution in a general nonlinear dynamical system

$$p(\mathbf{y}_t|\mathbf{x}_1,\ldots,\mathbf{x}_T) \propto \int p(\mathbf{y}_t|\mathbf{y}_{t-1})p(\mathbf{x}_t|\mathbf{y}_t)p(\mathbf{y}_{t-1}|\mathbf{x}_1,\ldots,\mathbf{x}_{t-1})p(\mathbf{x}_{t+1},\ldots,\mathbf{x}_T|\mathbf{y}_t)d\mathbf{y}_{t-1}$$

Distributed models



In the FHMM, moralisation puts simultaneous states $s_t^{(1)}, s_t^{(2)}, s_t^{(3)}$ into a single clique.

- M state variables, K values \Rightarrow sums over K^{2M} terms.
- Factorial prior ⇒ Factorial posterior (explaining away).

Variational methods approximate the posterior, often in a factored form. To see how they work, we need to review the free-energy interpretation of EM.

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Y} = \{\mathbf{y}_i\}$; Parameters θ .

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Y} = \{\mathbf{y}_i\}$; Parameters θ .

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

Any distribution, $q(\mathcal{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$\ell(\theta) = \log \int q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \ge \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y}$$

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Y} = \{\mathbf{y}_i\}$; Parameters θ .

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

Any distribution, $q(\mathcal{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$\ell(\theta) = \log \int q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \ge \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \stackrel{\text{def}}{=} \mathcal{F}(q, \theta).$$

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Y} = \{\mathbf{y}_i\}$; Parameters θ .

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

Any distribution, $q(\mathcal{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$\ell(\theta) = \log \int q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \ge \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \stackrel{\text{def}}{=} \mathcal{F}(q, \theta).$$

Now,

$$\int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} = \int q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y} - \int q(\mathcal{Y}) \log q(\mathcal{Y}) d\mathcal{Y}$$
$$= \int q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y} + \mathbf{H}[q],$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathcal{Y})$.

Observed data $\mathcal{X} = \{\mathbf{x}_i\}$; Latent variables $\mathcal{Y} = \{\mathbf{y}_i\}$; Parameters θ .

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ :

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

Any distribution, $q(\mathcal{Y})$, over the hidden variables can be used to obtain a lower bound on the log likelihood using Jensen's inequality:

$$\ell(\theta) = \log \int q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \ge \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} \stackrel{\text{def}}{=} \mathcal{F}(q, \theta).$$

Now,

$$\int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} d\mathcal{Y} = \int q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y} - \int q(\mathcal{Y}) \log q(\mathcal{Y}) d\mathcal{Y}$$
$$= \int q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y} + \mathbf{H}[q],$$

where $\mathbf{H}[q]$ is the entropy of $q(\mathcal{Y})$.

So:

$$\mathcal{F}(q,\theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + \mathbf{H}[q]$$

The E and M steps of EM

The log likelihood is bounded below by the variational free energy:

$$\mathcal{F}(q,\theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + \mathbf{H}[q],$$

The E and M steps of EM

The log likelihood is bounded below by the variational free energy:

$$\mathcal{F}(q,\theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + \mathbf{H}[q],$$

EM alternates between:

E step: optimise $\mathcal{F}(q,\theta)$ wrt distribution over hidden variables holding parameters fixed:

$$q^{(k)}(\mathcal{Y}) := \underset{q(\mathcal{Y})}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Y}), \underline{\theta^{(k-1)}}\big) = P(\mathcal{Y}|\mathcal{X}, \underline{\theta^{(k-1)}})$$

The E and M steps of EM

The log likelihood is bounded below by the variational free energy:

$$\mathcal{F}(q,\theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + \mathbf{H}[q],$$

EM alternates between:

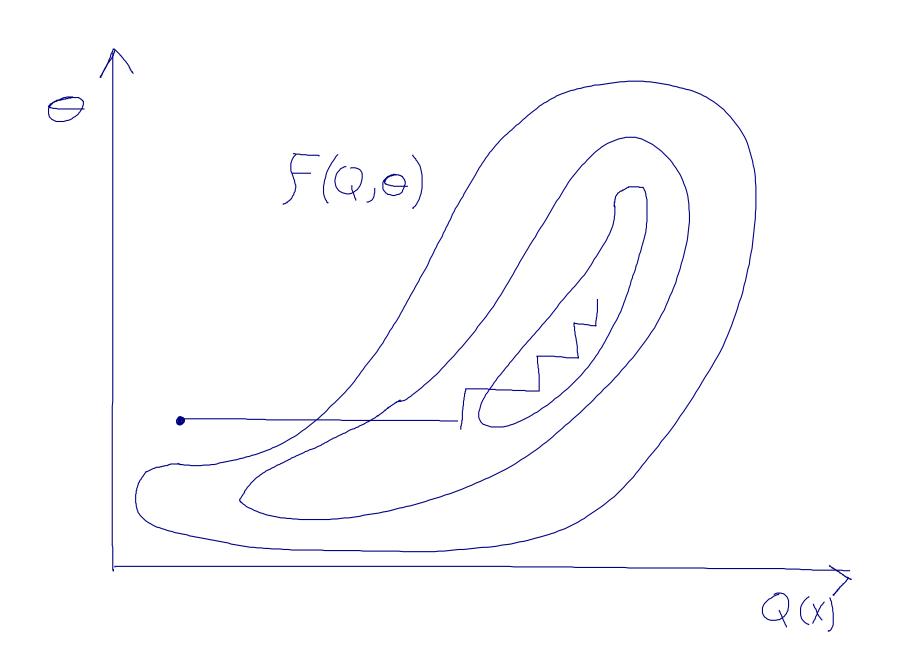
E step: optimise $\mathcal{F}(q,\theta)$ wrt distribution over hidden variables holding parameters fixed:

$$q^{(k)}(\mathcal{Y}) := \underset{q(\mathcal{Y})}{\operatorname{argmax}} \ \mathcal{F}\big(q(\mathcal{Y}), \boldsymbol{\theta^{(k-1)}}\big) = P(\mathcal{Y}|\mathcal{X}, \boldsymbol{\theta^{(k-1)}})$$

M step: maximise $\mathcal{F}(q,\theta)$ wrt parameters holding hidden distribution fixed:

$$\theta^{(k)} := \underset{\theta}{\operatorname{argmax}} \;\; \mathcal{F}\big(\textcolor{red}{q^{(k)}}(\textcolor{red}{\mathcal{Y}}), \theta \big) = \underset{\theta}{\operatorname{argmax}} \;\; \langle \log P(\mathcal{Y}, \mathcal{X} | \theta) \rangle_{q^{(k)}(\mathcal{Y})}$$

EM as Coordinate Ascent in ${\mathcal F}$



The E and M steps together never decrease the log likelihood:

$$\ell(\theta^{(k-1)})$$

The E and M steps together never decrease the log likelihood:

$$\ellig(heta^{(k-1)}ig) = \mathcal{F}ig(q^{(k)}, heta^{(k-1)}ig)$$

• The E step brings the free energy to the likelihood.

The E and M steps together never decrease the log likelihood:

$$\ell\big(\theta^{(k-1)}\big) \underset{\mathsf{E} \ \mathsf{step}}{=} \mathcal{F}\big(q^{(k)}, \theta^{(k-1)}\big) \underset{\mathsf{M} \ \mathsf{step}}{\leq} \mathcal{F}\big(q^{(k)}, \theta^{(k)}\big)$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ .

The E and M steps together never decrease the log likelihood:

$$\ell\big(\theta^{(k-1)}\big) \underset{\mathsf{E} \text{ step}}{=} \mathcal{F}\big(q^{(k)}, \theta^{(k-1)}\big) \underset{\mathsf{Step}}{\leq} \mathcal{F}\big(q^{(k)}, \theta^{(k)}\big) \underset{\mathsf{Jensen}}{\leq} \ell\big(\theta^{(k)}\big),$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ .
- $\mathcal{F} \leq \ell$ by Jensen or, equivalently, from the non-negativity of KL

The E and M steps together never decrease the log likelihood:

$$\ell\big(\theta^{(k-1)}\big) \underset{\mathsf{E} \text{ step}}{=} \mathcal{F}\big(q^{(k)}, \theta^{(k-1)}\big) \underset{\mathsf{M} \text{ step}}{\leq} \mathcal{F}\big(q^{(k)}, \theta^{(k)}\big) \underset{\mathsf{Jensen}}{\leq} \ell\big(\theta^{(k)}\big),$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ .
- $\mathcal{F} \leq \ell$ by Jensen or, equivalently, from the non-negativity of KL

If the M-step is executed so that $\theta^{(k)} \neq \theta^{(k-1)}$ iff \mathcal{F} increases, then the overall EM iteration will step to a new value of θ iff the likelihood increases.

What if finding expected sufficient stats under $P(\mathcal{Y}|\mathcal{X}, \theta)$ is computationally intractable?

What if finding expected sufficient stats under $P(\mathcal{Y}|\mathcal{X}, \theta)$ is computationally intractable?

In the **generalised EM** algorithm, we argued that intractable maximisations could be replaced by gradient M-steps.

What if finding expected sufficient stats under $P(\mathcal{Y}|\mathcal{X}, \theta)$ is computationally intractable?

In the **generalised EM** algorithm, we argued that intractable maximisations could be replaced by gradient M-steps. For the E-step we could:

- Parameterise $q = q_{\rho}(\mathcal{Y})$ and take a gradient step in ρ .
- Assume some simplified form for q, usually factored: $q = \prod_i q_i(\mathcal{Y}_i)$ where \mathcal{Y}_i partition \mathcal{Y} , and maximise within this form.

What if finding expected sufficient stats under $P(\mathcal{Y}|\mathcal{X}, \theta)$ is computationally intractable?

In the **generalised EM** algorithm, we argued that intractable maximisations could be replaced by gradient M-steps. For the E-step we could:

- Parameterise $q = q_{\rho}(\mathcal{Y})$ and take a gradient step in ρ .
- Assume some simplified form for q, usually factored: $q = \prod_i q_i(\mathcal{Y}_i)$ where \mathcal{Y}_i partition \mathcal{Y} , and maximise within this form.

In both cases, we assume $q \in \mathcal{Q}$, and optimise within this class:

VE step: maximise $\mathcal{F}(q,\theta)$ wrt restricted latent distribution given parameters:

$$q^{(k)}(\mathcal{Y}) := \mathop{\mathsf{argmax}}_{q(\mathcal{Y}) \in \mathcal{Q}} \ \mathcal{F}ig(q(\mathcal{Y}), oldsymbol{ heta^{(k-1)}}ig).$$

M step: unchanged

$$\theta^{(k)} := \underset{\theta}{\operatorname{argmax}} \ \mathcal{F}\big(\textcolor{red}{q^{(k)}(\mathcal{Y})}, \theta \big) = \underset{\theta}{\operatorname{argmax}} \ \int q^{(k)}(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y},$$

This maximises a lower bound on the log likelihood.

What does restricting q to \mathcal{Q} cost us?

What does restricting q to Q cost us?

• Recall that the free-energy is bounded above by Jensen:

$$\mathcal{F}(q,\theta) \le \ell(\theta^{\mathsf{ML}})$$

Thus, as long as every step increases \mathcal{F} , convergence is still guaranteed.

What does restricting q to Q cost us?

Recall that the free-energy is bounded above by Jensen:

$$\mathcal{F}(q,\theta) \le \ell(\theta^{\mathsf{ML}})$$

Thus, as long as every step increases \mathcal{F} , convergence is still guaranteed.

• But, since $P(\mathcal{Y}|\mathcal{X}, \theta^{(k)})$ may not lie in \mathcal{Q} , we no longer saturate the bound after the E-step. Thus, the likelihood may not increase on each full EM step.

$$\ell(\theta^{(k-1)}) \not\models \text{tep} \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \not\leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}),$$

What does restricting q to Q cost us?

Recall that the free-energy is bounded above by Jensen:

$$\mathcal{F}(q,\theta) \le \ell(\theta^{\mathsf{ML}})$$

Thus, as long as every step increases \mathcal{F} , convergence is still guaranteed.

• But, since $P(\mathcal{Y}|\mathcal{X}, \theta^{(k)})$ may not lie in \mathcal{Q} , we no longer saturate the bound after the E-step. Thus, the likelihood may not increase on each full EM step.

$$\ell(\theta^{(k-1)}) \not\models \mathsf{tep} \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),$$

ullet Thus, we may not converge to a maximum of ℓ .

What does restricting q to Q cost us?

Recall that the free-energy is bounded above by Jensen:

$$\mathcal{F}(q,\theta) \le \ell(\theta^{\mathsf{ML}})$$

Thus, as long as every step increases \mathcal{F} , convergence is still guaranteed.

• But, since $P(\mathcal{Y}|\mathcal{X}, \theta^{(k)})$ may not lie in \mathcal{Q} , we no longer saturate the bound after the E-step. Thus, the likelihood may not increase on each full EM step.

$$\ell(\theta^{(k-1)}) \not\models \mathsf{tep} \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),$$

ullet Thus, we may not converge to a maximum of ℓ .

The hope is that by *increasing a lower bound* on ℓ we will find a decent solution.

What does restricting q to Q cost us?

Recall that the free-energy is bounded above by Jensen:

$$\mathcal{F}(q,\theta) \le \ell(\theta^{\mathsf{ML}})$$

Thus, as long as every step increases \mathcal{F} , convergence is still guaranteed.

• But, since $P(\mathcal{Y}|\mathcal{X}, \theta^{(k)})$ may not lie in \mathcal{Q} , we no longer saturate the bound after the E-step. Thus, the likelihood may not increase on each full EM step.

$$\ell(\theta^{(k-1)}) \not\models \mathsf{tep} \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),$$

ullet Thus, we may not converge to a maximum of ℓ .

The hope is that by *increasing a lower bound* on ℓ we will find a decent solution. [Note that if $P(\mathcal{Y}|\mathcal{X}, \theta^{\mathsf{ML}}) \in \mathcal{Q}$, then θ^{ML} is a fixed point of the variational algorithm.]

KL divergence

Recall that

$$\begin{split} \mathcal{F}(q,\theta) &= \langle \log P(\mathcal{X},\mathcal{Y}|\theta) \rangle_{q(\mathcal{Y})} + \mathbf{H}[q] \\ &= \langle \log P(\mathcal{X}|\theta) + \log P(\mathcal{Y}|\mathcal{X},\theta) \rangle_{q(\mathcal{Y})} - \langle \log q(\mathcal{Y}) \rangle_{q(\mathcal{Y})} \\ &= \langle \log P(\mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} - \mathbf{KL}[q \| P(\mathcal{Y}|\mathcal{X},\theta)]. \end{split}$$

Thus,

E step maximise $\mathcal{F}(q,\theta)$ wrt the distribution over latents, given parameters:

$$q^{(k)}(\mathcal{Y}) := \mathop{\mathsf{argmax}}_{q(\mathcal{Y}) \in \mathcal{Q}} \ \mathcal{F}ig(q(\mathcal{Y}), oldsymbol{ heta^{(k-1)}}ig).$$

is equivalent to:

E step minimise $KL[q||p(\mathcal{Y}|\mathcal{X},\theta)]$ wrt distribution over latents, given parameters:

$$q^{(k)}(\mathcal{Y}) := \operatorname*{argmin}_{q(\mathcal{Y}) \in \mathcal{Q}} \int q(\mathcal{Y}) \log \frac{q(\mathcal{Y})}{p(\mathcal{Y}|\mathcal{X}, \textcolor{red}{\theta^{(k-1)}})} d\mathcal{Y}$$

So, in each E step, the algorithm is trying to find the best approximation to $P(\mathcal{Y}|\mathcal{X})$ in \mathcal{Q} .

This is related to ideas in *information geometry*.

The most common form of variational approximation partitions \mathcal{Y} into disjoint sets \mathcal{Y}_i with

$$Q = \{q \mid q(\mathcal{Y}) = \prod_{i} q_i(\mathcal{Y}_i)\}.$$

In this case the E-step is itself iterative:

(Factored VE step)_i: maximise $\mathcal{F}(q,\theta)$ wrt $q_i(\mathcal{Y}_i)$ given other q_i and parameters:

$$q_i^{(k)}(\mathcal{Y}_i) := rgmax_{q_i(\mathcal{Y}_i)} \ \mathcal{F}ig(q_i(\mathcal{Y}_i) \prod_{j
eq i} q_j(\mathcal{Y}_j), heta^{(k-1)}ig).$$

The q_i s can be updated iteratively until convergence before moving on to the M-step. Alternatively, we can make a single pass over all q_i (starting from values at the last step) and then perform an M-step. Each VE step increases \mathcal{F} , so convergence is still guaranteed.

The Factored Variational E-step has a general form.

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

$$= \int d\mathcal{Y}_{i} \ q_{i}(\mathcal{Y}_{i}) \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j \neq i} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}[q_{i}] + \sum_{j \neq i} \mathbf{H}[q_{j}]$$

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

$$= \int d\mathcal{Y}_{i} \ q_{i}(\mathcal{Y}_{i}) \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j \neq i} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}[q_{i}] + \sum_{j \neq i} \mathbf{H}[q_{j}]$$

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of q_i):

$$\frac{\delta}{\delta q_i} \left(\mathcal{F} + \lambda \left(\int q_i - 1 \right) \right) =$$

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

$$= \int d\mathcal{Y}_{i} \ q_{i}(\mathcal{Y}_{i}) \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j \neq i} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}[q_{i}] + \sum_{j \neq i} \mathbf{H}[q_{j}]$$

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of q_i):

$$\frac{\delta}{\delta q_i} \left(\mathcal{F} + \lambda \left(\int q_i - 1 \right) \right) = \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{j \neq i} q_j(\mathcal{Y}_j)} - \log q_i(\mathcal{Y}_i) - 1 + \lambda$$

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

$$= \int d\mathcal{Y}_{i} \ q_{i}(\mathcal{Y}_{i}) \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{j \neq i} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}[q_{i}] + \sum_{j \neq i} \mathbf{H}[q_{j}]$$

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of q_i):

$$\frac{\delta}{\delta q_i} \left(\mathcal{F} + \lambda \left(\int q_i - 1 \right) \right) = \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{j \neq i} q_j(\mathcal{Y}_j)} - \log q_i(\mathcal{Y}_i) - 1 + \lambda$$

$$(= 0) \quad \Rightarrow \quad q_i(\mathcal{Y}_i) \propto \exp \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{i \neq i} q_i(\mathcal{Y}_i)}$$

Factored Variational E-step

The Factored Variational E-step has a general form.

The free energy is:

$$\mathcal{F}\Big(\prod_{j} q_{j}(\mathcal{Y}_{j}), \theta^{(k-1)}\Big) = \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}\Big[\prod_{j} q_{j}(\mathcal{Y}_{j})\Big]$$

$$= \int d\mathcal{Y}_{i} \ q_{i}(\mathcal{Y}_{i}) \Big\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \Big\rangle_{\prod_{j \neq i} q_{j}(\mathcal{Y}_{j})} + \mathbf{H}[q_{i}] + \sum_{j \neq i} \mathbf{H}[q_{j}]$$

Now, taking the variational derivative of the Lagrangian (enforcing normalisation of q_i):

$$\frac{\delta}{\delta q_i} \left(\mathcal{F} + \lambda \left(\int q_i - 1 \right) \right) = \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{j \neq i} q_j(\mathcal{Y}_j)} - \log q_i(\mathcal{Y}_i) - 1 + \lambda$$

$$(= 0) \quad \Rightarrow \quad q_i(\mathcal{Y}_i) \propto \exp \left\langle \log P(\mathcal{X}, \mathcal{Y} | \theta^{(k-1)}) \right\rangle_{\prod_{i \neq i} q_i(\mathcal{Y}_i)}$$

In general, this depends only on the expected sufficient statistics under q_j . Thus, once again, we don't actually need the *entire* distributions, just the *relevant* expectations.

Mean-field Approximations

If $\mathcal{Y}_i = y_i$ (i.e., q is factored over all variables) then the variational technique is often called a "mean field" approximation.

Suppose $P(\mathcal{X}, \mathcal{Y})$ is log-linear, e.g. the Boltzmann machine:

$$P(\mathcal{X}, \mathcal{Y}) = \frac{1}{Z} \exp\left(\sum_{ij} W_{ij} s_i s_j + \sum_i b_i s_i\right)$$

with some $s_i \in \mathcal{Y}$ and others observed.

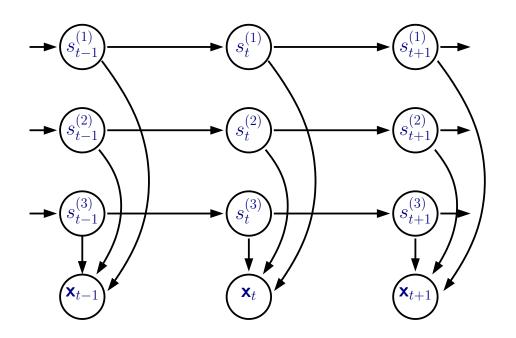
Expectations wrt a fully factored q distribute over all $s_i \in \mathcal{Y}$

$$\langle \log P(\mathcal{X}, \mathcal{Y}) \rangle_{\prod q_i} = \sum_{ij} W_{ij} \langle s_i \rangle_{q_i} \langle s_j \rangle_{q_j} + \sum_i b_i \langle s_i \rangle_{q_i}$$

(where q_i for $s_i \in \mathcal{X}$ is a delta function on observed value).

Thus, we can update each q_i in turn given the means of the others. Each variable is seeing the *mean* field imposed by its neighbours. We update these fields until they all agree.

Mean-field FHMM



The mean-field approach to the FHMM with

$$q(s_{1:T}^{1:M}) = \prod_{m,t} q_t^m(s_t^m)$$

yields a variant of the usual forward-backward algorithm. Coupling between the different chains only takes place through the joint output distribution. Each update depends only on the immediate neighbours.

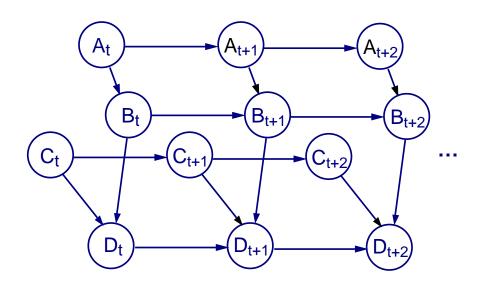
$$\begin{split} q_{t'}^{m'}(s_{t'}^{m'}) &\propto \exp\bigg\langle \log P(\mathbf{s}_{1:T}^{1:M}, \mathbf{x}_{1:T}) \bigg\rangle_{\prod_{-(m',t')} q_{t}^{m}(s_{t}^{m})} \\ &= \exp\bigg\langle \sum_{m} \sum_{t} \log P(s_{t}^{m}|s_{t-1}^{m}) + \sum_{t} \log P(\mathbf{x}_{t}|s_{t}^{1:M}) \bigg\rangle_{\prod_{-(m',t')} q_{t}^{m}} \\ &\propto \exp\bigg[\bigg\langle \log P(s_{t'}^{m'}|s_{t'-1}^{m'}) \bigg\rangle_{q_{t'-1}^{m'}} + \bigg\langle \log P(s_{t+1'}^{m'}|s_{t'}^{m'}) \bigg\rangle_{q_{t'+1}^{m'}} + \bigg\langle \log P(\mathbf{x}_{t'}|s_{t'}^{1:M}) \bigg\rangle_{\prod_{-m} q_{t'}^{m}} \end{split}$$

Structured Variational Approximations

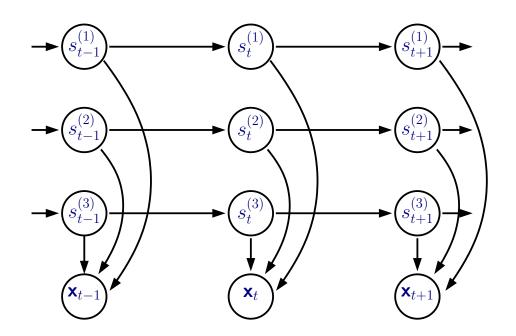
 $q(\mathcal{Y})$ need not be completely factorized.

For example, suppose you can partition $\mathcal Y$ into sets $\mathcal Y_1$ and $\mathcal Y_2$ such that computing the expected sufficient statistics under $q(\mathcal Y_1)$ and $q(\mathcal Y_2)$ is tractable. Then $q(\mathcal Y)=q(\mathcal Y_1)q(\mathcal Y_2)$ is tractable.

If you have a graphical model, you may want to factorize $q(\mathcal{Y})$ into a product of trees, which are tractable distributions.



Stuctured FHMM



The most natural structured approximation in the FHMM is to factor each chain from the others

$$q(s_{1:T}^{1:M}) = \prod_{m} q^m(s_{1:T}^m)$$

Updates within each chain are then found by a forward-backward algorithm, with a modified "likelihood" term.

$$\begin{split} q^{m'}(s_{1:T}^{m'}) &\propto \exp\left\langle \log P(\mathbf{s}_{1:T}^{1:M}, \mathbf{x}_{1:T}) \right\rangle_{\prod_{\neg m'} q^m(s_{1:T}^m)} \\ &= \exp\left\langle \sum_{m} \sum_{t} \log P(s_t^m | s_{t-1}^m) + \sum_{t} \log P(\mathbf{x}_t | s_t^{1:M}) \right\rangle_{\prod_{\neg m'} q^m} \\ &\propto \exp\left[\sum_{t} \log P(s_t^{m'} | s_{t-1}^{m'}) + \sum_{t} \left\langle \log P(\mathbf{x}_{t'} | s_{t'}^{1:M}) \right\rangle_{\prod_{\neg m'} q^m(s_{t'}^m)} \right] \\ &= \prod_{t} P(s_t^{m'} | s_{t-1}^{m'}) \quad \prod_{t} e^{\left\langle \log P(\mathbf{x}_{t'} | s_{t'}^{1:M}) \right\rangle_{\prod_{\neg m'} q^m(s_{t'}^m)}} \end{split}$$

Variational Approximations and Graphical Models I

Let
$$q(\mathcal{Y}) = \prod_i q_i(\mathcal{Y}_i)$$
.

Variational approximation maximises \mathcal{F} :

$$\mathcal{F}(q) = \int q(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}) d\mathcal{Y} - \int q(\mathcal{Y}) \log q(\mathcal{Y}) d\mathcal{Y}$$

Focusing on one term, q_i , we can write this as:

$$\mathcal{F}(q_j) = \int q_j(\mathcal{Y}_j) \left\langle \log p(\mathcal{Y}, \mathcal{X}) \right\rangle_{\neg q_j(\mathcal{Y}_j)} d\mathcal{Y}_j + \int q_j(\mathcal{Y}_j) \log q_j(\mathcal{Y}_j) d\mathcal{Y}_j + \mathsf{const}$$

Where $\langle \cdot \rangle_{\neg q_j(\mathcal{Y}_j)}$ denotes averaging w.r.t. $q_i(\mathcal{Y}_i)$ for all $i \neq j$

Optimum occurs when:

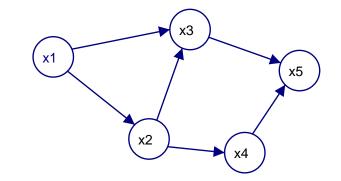
$$q_j^*(\mathcal{Y}_j) = \frac{1}{Z} \exp \langle \log p(\mathcal{Y}, \mathcal{X}) \rangle_{\neg q_j(\mathcal{Y}_j)}$$

Variational Approximations and Graphical Models II

Optimum occurs when:

$$q_j^*(\mathcal{Y}_j) = \frac{1}{Z} \exp \langle \log p(\mathcal{Y}, \mathcal{X}) \rangle_{\neg q_j(\mathcal{Y}_j)}$$

Assume graphical model: $p(\mathcal{Y}, \mathcal{X}) = \prod_i p(X_i | pa_i)$



$$\begin{split} \log q_j^*(\mathcal{Y}_j) &= \left\langle \sum_i \log p(X_i|\mathsf{pa}_i) \right\rangle_{\neg q_j(\mathcal{Y}_j)} + \mathsf{const} \\ &= \left\langle \log p(\mathcal{Y}_j|\mathsf{pa}_j) \right\rangle_{\neg q_j(\mathcal{Y}_j)} + \sum_{k \in \mathsf{ch}_j} \left\langle \log p(X_k|\mathsf{pa}_k) \right\rangle_{\neg q_j(\mathcal{Y}_j)} + \mathsf{const} \end{split}$$

This defines messages that get passed between nodes in the graph. Each node receives messages from its Markov boundary: parents, children and parents of children.

Variational Message Passing (Winn and Bishop, 2004)

Variational Approximations to Bayesian Learning

$$\log p(\mathcal{X}) = \log \int \int p(\mathcal{X}, \mathcal{Y} | \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\mathcal{Y} d\boldsymbol{\theta}$$

$$\geq \int \int q(\mathcal{Y}, \boldsymbol{\theta}) \log \frac{p(\mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})}{q(\mathcal{Y}, \boldsymbol{\theta})} d\mathcal{Y} d\boldsymbol{\theta}$$

Constrain $q \in \mathcal{Q}$ s.t. $q(\mathcal{Y}, \boldsymbol{\theta}) = q(\mathcal{Y})q(\boldsymbol{\theta})$.

This results in the variational Bayesian EM algorithm.

Variational Bayesian Learning

Lower Bounding the Marginal Likelihood

Let the hidden latent variables be \mathcal{Y} , data \mathcal{X} and the parameters $\boldsymbol{\theta}$.

Lower bound the marginal likelihood (Bayesian model evidence) using Jensen's inequality:

$$\log P(\mathcal{X}) = \log \int d\mathcal{Y} d\boldsymbol{\theta} \ P(\mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})$$

$$= \log \int d\mathcal{Y} d\boldsymbol{\theta} \ Q(\mathcal{Y}, \boldsymbol{\theta}) \frac{P(\mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})}{Q(\mathcal{Y}, \boldsymbol{\theta})}$$

$$\geq \int d\mathcal{Y} d\boldsymbol{\theta} \ Q(\mathcal{Y}, \boldsymbol{\theta}) \log \frac{P(\mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})}{Q(\mathcal{Y}, \boldsymbol{\theta})}.$$

The saturating $Q(\mathcal{Y}, \boldsymbol{\theta}) = P(\mathcal{Y}, \boldsymbol{\theta} | \mathcal{X})$ is almost always intractable. Use a simpler, factorised approximation $Q(\mathcal{Y}, \boldsymbol{\theta}) = Q_{\mathcal{Y}}(\mathcal{Y})Q_{\boldsymbol{\theta}}(\boldsymbol{\theta})$:

$$\log P(\mathcal{X}) \geq \int d\mathcal{Y} d\boldsymbol{\theta} \ Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) \log \frac{P(\mathcal{X}, \mathcal{Y}, \boldsymbol{\theta})}{Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\boldsymbol{\theta}}(\boldsymbol{\theta})}$$
$$= \mathcal{F}(Q_{\mathcal{Y}}(\mathcal{Y}), Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}), \mathcal{X}).$$

Maximize this lower bound. The resulting value is the approximation to the evidence.

Variational Bayesian Learning ...

Maximizing this lower bound, \mathcal{F} , leads to **EM-like** updates:

$$Q_{\mathcal{Y}}^{*}(\mathcal{Y}) \propto \exp \langle \log P(\mathcal{Y}, \mathcal{X} | \boldsymbol{\theta}) \rangle_{Q_{\boldsymbol{\theta}}(\boldsymbol{\theta})}$$
 $E-like \ step$ $Q_{\boldsymbol{\theta}}^{*}(\boldsymbol{\theta}) \propto P(\boldsymbol{\theta}) \exp \langle \log P(\mathcal{Y}, \mathcal{X} | \boldsymbol{\theta}) \rangle_{Q_{\mathcal{Y}}(\mathcal{Y})}$ $M-like \ step$

Maximizing \mathcal{F} is equivalent to minimizing KL-divergence between the *approximate posterior*, $Q(\boldsymbol{\theta})Q(\mathcal{Y})$ and the *true posterior*, $P(\boldsymbol{\theta},\mathcal{Y}|\mathcal{X})$.

$$\log P(\mathcal{X}) - \mathcal{F}(Q_{\mathcal{Y}}(\mathcal{Y}), Q_{\theta}(\theta), \mathcal{X}) =$$

$$\log P(\mathcal{X}) - \int d\mathcal{Y} d\theta \ Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\theta}(\theta) \log \frac{P(\mathcal{X}, \mathcal{Y}, \theta)}{Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\theta}(\theta)} =$$

$$\int d\mathcal{Y} d\theta \ Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\theta}(\theta) \log \frac{Q_{\mathcal{Y}}(\mathcal{Y}) Q_{\theta}(\theta)}{P(\mathcal{Y}, \theta | \mathcal{X})} = KL(Q||P)$$

Conjugate-Exponential models

Let's focus on *conjugate-exponential* (CE) models, which satisfy (1) and (2):

• Condition (1). The joint probability over *variables* is in the exponential family:

$$P(\mathcal{Y}, \mathcal{X} | \boldsymbol{\theta}) = f(\mathcal{Y}, \mathcal{X}) \ g(\boldsymbol{\theta}) \exp \left\{ \boldsymbol{\phi}(\boldsymbol{\theta})^{\top} \mathbf{u}(\mathcal{Y}, \mathcal{X}) \right\}$$

where $\phi(\theta)$ is the vector of *natural parameters*, **u** are *sufficient statistics*

• Condition (2). The prior over *parameters* is conjugate to this joint probability:

$$P(\boldsymbol{\theta}|\eta, \boldsymbol{\nu}) = h(\eta, \boldsymbol{\nu}) \ g(\boldsymbol{\theta})^{\eta} \exp \left\{ \boldsymbol{\phi}(\boldsymbol{\theta})^{\top} \boldsymbol{\nu} \right\}$$

where η and ν are hyperparameters of the prior.

Conjugate priors are computationally convenient and have an intuitive interpretation:

- η : number of pseudo-observations
- ν : values of pseudo-observations

Conjugate-Exponential examples

In the **CE** family:

- Gaussian mixtures
- factor analysis, probabilistic PCA
- hidden Markov models and factorial HMMs
- linear dynamical systems and switching models
- discrete-variable belief networks

Other as yet undreamt-of models can combine Gaussian, Gamma, Poisson, Dirichlet, Wishart, Multinomial and others.

Not in the **CE** family:

- Boltzmann machines, MRFs (no simple conjugacy)
- logistic regression (no simple conjugacy)
- sigmoid belief networks (not exponential)
- independent components analysis (not exponential)

Note: one can often approximate these models with models in the **CE** family.

A Useful Result

Given an iid data set $\mathcal{X} = (\mathcal{X}_1, \dots \mathcal{X}_n)$, if the model is **CE** then:

(a) $Q_{\theta}(\theta)$ is also conjugate, *i.e.*

$$Q_{\boldsymbol{\theta}}(\boldsymbol{\theta}) = h(\tilde{\eta}, \tilde{\boldsymbol{\nu}}) g(\boldsymbol{\theta})^{\tilde{\eta}} \exp\left\{\boldsymbol{\phi}(\boldsymbol{\theta})^{\top} \tilde{\boldsymbol{\nu}}\right\}$$

where $\tilde{\eta} = \eta + n$ and $\tilde{\boldsymbol{\nu}} = \boldsymbol{\nu} + \sum_i \overline{\mathbf{u}}(\mathcal{Y}_i, \mathcal{X}_i)$.

(b) $Q_{\mathcal{Y}}(\mathcal{Y}) = \prod_{i=1}^n Q_{\mathcal{Y}_i}(\mathcal{Y}_i)$ is of the same form as in the E step of regular EM, but using pseudo parameters computed by averaging over $Q_{\theta}(\theta)$

$$Q_{\mathcal{Y}_i}(\mathcal{Y}_i) \propto f(\mathcal{Y}_i, \mathcal{X}_i) \exp\left\{\overline{\boldsymbol{\phi}}(\boldsymbol{\theta})^{\top} \mathbf{u}(\mathcal{Y}_i, \mathcal{X}_i)\right\} = P(\mathcal{Y}_i | \mathcal{X}_i, \overline{\boldsymbol{\phi}}(\boldsymbol{\theta}))$$

KEY points:

- (a) the approximate parameter posterior is of the same form as the prior, so it is easily summarized in terms of two sets of hyperparameters, $\tilde{\eta}$ and $\tilde{\nu}$;
- (b) the approximate hidden variable posterior, averaging over all parameters, is of the same form as the hidden variable posterior for a single setting of the parameters, so again, it is easily computed using the usual methods.

The Variational Bayesian EM algorithm

EM for MAP estimation

Goal: maximize $p(\boldsymbol{\theta}|\mathcal{X}, m)$ w.r.t. $\boldsymbol{\theta}$

E Step: compute

$$q_{\mathcal{Y}}^{(t+1)}(\mathcal{Y}) = p(\mathcal{Y}|\mathcal{X}, \boldsymbol{\theta}^{(t)})$$

M Step:

Variational Bayesian EM

Goal: lower bound $p(\mathcal{X}|m)$

VB-E Step: compute

$$q_{\mathcal{Y}}^{(t+1)}(\mathcal{Y}) = p(\mathcal{Y}|\mathcal{X}, \bar{\boldsymbol{\phi}}^{(t)})$$

VB-M Step:

$$q_{\boldsymbol{\theta}}^{(t+1)}(\boldsymbol{\theta}) = \exp\left[\int q_{\mathcal{Y}}^{(t+1)}(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}, \boldsymbol{\theta}) d\mathcal{Y}\right]$$

Properties:

- Reduces to the EM algorithm if $q_{\theta}(\theta) = \delta(\theta \theta^*)$.
- \bullet \mathcal{F}_m increases monotonically, and incorporates the model complexity penalty.
- Analytical parameter distributions (but not constrained to be Gaussian).
- VB-E step has same complexity as corresponding E step.
- We can use the junction tree, belief propagation, Kalman filter, etc, algorithms in the VB-E step of VB-EM, but using expected natural parameters, ϕ .

Variational Bayes: History of Models Treated

- multilayer perceptrons (Hinton & van Camp, 1993)
- mixture of experts (Waterhouse, MacKay & Robinson, 1996)
- hidden Markov models (MacKay, 1995)
- other work by Jaakkola, Jordan, Barber, Bishop, Tipping, etc.

Examples of Variational Learning of Model Structure

- mixtures of factor analysers (Ghahramani & Beal, 1999)
- mixtures of Gaussians (Attias, 1999)
- independent components analysis (Attias, 1999; Miskin & MacKay, 2000; Valpola 2000)
- principal components analysis (Bishop, 1999)
- linear dynamical systems (Ghahramani & Beal, 2000)
- mixture of experts (Ueda & Ghahramani, 2000)
- discrete graphical models (Beal & Ghahramani, 2002)
- VIBES software for conjugate-exponential graphs (Winn, 2003)

ARD for unsupervised learning

A idea similar to supervised ARD can be used with Variational Bayesian methods to learn the dimensionality of a latent space. Consider factor analysis:

$$\mathbf{x} \sim \mathcal{N}\left(\Lambda \mathbf{y}, \Psi\right)$$
 $\mathbf{y} \sim \mathcal{N}\left(0, I\right)$

with a prior

$$\Lambda_i \sim \mathcal{N}\left(0, \alpha_i^{-1} I\right)$$

The VB free energy is a function of the data, $Q_{\mathcal{Y}}(\mathcal{Y})$, $Q_{\Lambda}(\Lambda)$ and α :

$$\mathcal{F}(Q_{\mathcal{Y}}(\mathcal{Y}), Q_{\Lambda}(\Lambda), \mathcal{X}, \boldsymbol{\alpha}) = \left\langle \log P(\mathcal{X}, \mathcal{Y} | \Lambda, \Psi) + \log P(\Lambda | \boldsymbol{\alpha}) + \log P(\Psi) \right\rangle_{Q_{\mathcal{Y}}Q_{\Lambda}} + \mathbf{H}[Q_{\mathcal{Y}}] + \mathbf{H}[Q_{\Lambda}]$$

Optimising this wrt the distributions and α in turn (like EM) causes some α_i to diverge, restricting the effective dimensionality of \mathbf{y} .

ARD for unsupervised learning