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Recap: Belief Propagation on Undirected Trees

Joint distribution of undirected tree:g

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) i j

k
Mi→j

Recursively compute messages:

Mi→j(Xj) :=
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Marginal distributions:

p(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ∝ fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Loopy Belief Propagation

Joint distribution of undirected graph:

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) i j

k
Mi→j

Recursively compute messages (and hope that updates converge):

Mi→j(Xj) :=
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Approximate marginal distributions:

p(Xi) ≈ bi(Xi) ∝ fi(Xi)
∏

k∈ne(i)

Mk→i(Xi)

p(Xi, Xj) ≈ bij(Xi, Xj) ∝ fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)



Practical Considerations

• Convergence: Loopy BP is not guaranteed to converge for most graphs.

– Trees: BP will converge.
– Single loop: BP will converge for graphs containing at most one loop.
– Weak interactions: BP will converge for graphs with weak enough interactions.
– Long loops: BP more likely to converge for graphs with long (weakly interacting) loops.
– Gaussian networks: Means correct, variances many converge under some conditions.

• Damping: Popular approach to encourage convergence.

Mnew
i→j(Xj) := (1− α)Mold

i→j(Xj) + α
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

• Convergent alternatives: to loopy BP.

– Algorithms with same fixed points as BP, but guaranteed to converge.
– Algorithms based on same principles as BP.

• Other graphical models: equivalent formulations for DAG and factor graphs.

• Grouping variables: Multiple variables can be grouped into regions to improve accuracy.

– Region graph approximations.
– Cluster variational method.
– Junction graph.



Different Perspectives on Loopy Belief Propagation

• Expectation propagation.

• Tree-based Reparametrization.

• Bethe free energy.



Loopy BP as Expectation Propagation

i j i j

Approximate each factor fij describing interaction between i and j as:

fij(Xi, Xj) ≈ f̃ij(Xi, Xj) =Mi→j(Xj)Mj→i(Xi)

The full joint distribution is thus approximated by a factorized distribution:

p(X) ≈ 1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

f̃ij(Xi, Xj) =
1

Z

∏
nodes i

fi(Xi)
∏

j∈ne(i)

Mj→i(Xi) =
∏

nodes i

bi(Xi)



Loopy BP as Expectation Propagation

Each EP update to f̃ij is as follows:

• “Corrected” distribution is:

fij(Xi, Xj)q¬ij(X) =fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)∏
s 6=i,j

fs(Xs)
∏

t∈ne(s)

Mt→s(Xs)

• Moments are just marginal distributions on i and j.

• Thus optimal f̃ij(Xi, Xj) minimizing

KL[fij(Xi, Xj)q¬ij(X)‖f̃ij(Xi, Xj)q¬ij(X)]

is given by:

fj(Xj)Mi→j(Xj)
∏

l∈ne(j)\i

Ml→j(Xj) =
∑
Xi

fij(Xi, Xj)fi(Xi)fj(Xj)
∏

k∈ne(i)\j

Mk→i(Xi)
∏

l∈ne(j)\i

Ml→j(Xj)

Mi→j(Xj) =
∑
Xi

fij(Xi, Xj)fi(Xi)
∏

k∈ne(i)\j

Mk→i(Xi)

Similarly for Mj→i(Xi).



Loopy BP as Tree-based Reparametrization

Many ways of parametrizing tree-structured distributions.

p(X) =
1

Z

∏
nodes i

fi(Xi)
∏

edges (ij)

fij(Xi, Xj) undirected tree (1)

= p(Xr)
∏
i 6=r

p(Xi|Xpa(i)) directed (rooted) tree (2)

=
∏

nodes i

p(Xi)
∏

edges (ij)

p(Xi, Xj)

p(Xi)p(Xj)
locally consistent marginals (3)

Undirected tree representation is redundant—multiplying a factor fij(Xi, Xj) by g(Xi), and
dividing fi(Xi) by the same g(Xi) does not change the distribution.

BP on tree can be understood as reparametrizing (1) by locally consistent factors. This
results in (3), from which the local marginals can be read off.



Loopy BP as Tree-based Reparametrization

graph spanning tree 1 spanning tree 2

p(X) =
1

Z

∏
nodes i

f 0i (Xi)
∏

edges (ij)

f 0ij(Xi, Xj)

=
1

Z

∏
nodes i∈T1

f 0i (Xi)
∏

edges (ij)∈T1

f 0ij(Xi, Xj)
∏

edges (ij)6∈T1

f 0ij(Xi, Xj)

=
1

Z

∏
nodes i∈T1

f 1i (Xi)
∏

edges (ij)∈T1

f 1ij(Xi, Xj)
∏

edges (ij)6∈T1

f 1ij(Xi, Xj)

where f 1i (Xi) = pT1(Xi), f 1ij(Xi, Xj) =
pT1(Xi,Xj)

pT1(Xi)p
T1(Xj)

, f 1ij = f 0ij.

=
1

Z

∏
nodes i∈T2

f 1i (Xi)
∏

edges (ij)∈T2

f 1ij(Xi, Xj)
∏

edges (ij)6∈T2

f 1ij(Xi, Xj)

. . .



Loopy BP as Tree-based Reparametrization

At convergence, loopy BP has reparametrized the joint distribution as:

p(X) =
1

Z

∏
nodes i

f∞i (Xi)
∏

edges (ij)

f∞ij (Xi, Xj)

where for any tree T embedded in the graph,

f∞i (Xi) = pT (Xi)

f∞ij (Xi, Xj) =
pT (Xi, Xj)

pT (Xi)pT (Xj)

In particular, all local marginals of all trees are locally consistent with each other:

p(X) =
1

Z

∏
nodes i

bi(Xi)
∏

edges (ij)

bij(Xi, Xj)

bi(Xi)bj(Xj)



Loopy BP as Optimizing Bethe Free Energy

p(X) =
1

Z

∏
i

fi(Xi)
∏
(ij)

fij(Xi, Xj)

Loopy BP can be derived as fixed point equations for finding stationary points of an objective
function called the Bethe free energy.

The Bethe free energy is not optimized wrt a full distribution over X, rather over locally
consistent pseudomarginals or beliefs bi ≥ 0 and bij ≥ 0:∑

Xi

bi(Xi) = 1 ∀i∑
Xj

bij(Xi, Xj) = bi(Xi) ∀i, j ∈ ne(i)



Loopy BP as Optimizing Bethe Free Energy

Fbethe(b) = Ebethe(b) +Hbethe(b)

The Bethe average energy is “exact”:

Ebethe(b) =
∑
i

∑
Xi

bi(Xi) log fi(Xi) +
∑
(ij)

∑
Xi,Xj

bij(Xi, Xj) log fij(Xi, Xj)

While the Bethe entropy is approximate:

Hbethe(b) = −
∑
i

∑
Xi

bi(Xi) log bi(Xi)−
∑
(ij)

∑
Xi,Xj

bij(Xi, Xj) log
bij(Xi, Xj)

bi(Xi)bj(Xj)

Factors in denominator are to account for overcount of entropy on edges, so that the Bethe
entropy is exact on trees.

Message updates in loopy BP can now derived by finding the stationary points of the La-
grangian (with Lagrange multipliers included to enforce local consistency). Messages are
related to the Lagrange multipliers.



Loopy BP as Optimizing Bethe Free Energy

• Fixed points of loopy BP are exactly the stationary points of the Bethe free energy.

• Stable fixed points of loopy BP are local maximum of Bethe free enegy (note we used
inverted notion of free energy to be consistent with the variational free energy).

• For binary attractive networks, Bethe free energy at fixed points of loopy BP forms up-
per bound on log partition function logZ—this is useful for learning undirected graphical
models as it leads to a lower bound on the log likelihood.



Loopy BP vs Variational Approximation

• Beliefs bi and bij in loopy BP are only locally consistent pseudomarginals and do not
necessarily form a full joint distribution.

• Bethe free energy accounts for interactions between different sites, while variational free
energy assumes independence.

• The loop series or Plefka expansion of the log partition function Z: the variational free
energy forms the first order terms, while Bethe free energy contains higher order terms
(involving generalized loops).

• Loopy BP tends to be signficantly more accurate whenever it converges.



Extensions and Variations

• Generalized BP: group variables together to treat their interac-
tions exactly.

• Convergent alternatives: Fixed points of loopy BP are stationary
points of the Bethe free enegy. We can derive algorithms maxi-
mizing the Bethe free energy thus are guaranteed to converge.

• Convex alternatives: We can derive convex cousins of the negative of the Bethe free en-
ergy. These give rise to algorithms that will converge to the unique global maximum.

• Treatment of loopy Viterbi or max-product algorithms is different.
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