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Variational Recapitulation

Free energy:

F(q, θ) = 〈logP (X ,Y|θ)〉q(Y|X ) + H[q] = logP (X|θ)− KL[q(Y)‖P (Y|X , θ)] ≤ `(θ)

E-steps:

• Exact EM:
q(Y) = argmax

q
F = P (Y|X , θ)

– Saturates bound: converges to max likelihood.

• (Factored) variational approximation:

q(Y) = argmax
q1(Y1)q2(Y2)

F = argmin
q1(Y1)q2(Y2)

KL[q1(Y1)q2(Y2)‖P (Y|X , θ)]

– Increases bound: provably converges, but not necc. to ML.

• Other approximations:
q(Y) ≈ P (Y|X , θ)

– Usually no guarantee, but if converges may be more accurate than factored var. ap-
prox.



Approximation

Makes sense to consider q closest to P in some sense.

q = argmin
q∈Q

D(P‖q)

– metric for closeness?
– constraint space Q?

Variational methods use D = KL[q‖P ]. Factored constraints lead to efficient message
passing approaches. What about other divergences?



The Other KL

What about the ‘other’ KL (q = argmin KL[P‖q])?

Crucially, for a factored approximation the (clique) marginals are correct:

argmin
qi

KL
[
P (Y|X )

∥∥∥∏ qj(Yj|X )
]

= argmin
qi

−
∫
dY P (Y|X ) log

∏
j

qj(Yj|X )

= argmin
qi

−
∑
j

∫
dY P (Y|X ) log qj(Yj|X )

= argmin
qi

−
∫
dYi P (Yi|X ) log qi(Yi|X )

= P (Yi|X )

and the marginals are what we need for learning (although if factored over disjoint sets as in
var. approx. some cliques will be missing).

Perversely, this means finding the best q for this KL is intractrable! But if we can minimise it
approximately we might still get decent results.



Approximate Optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P (Y|X ) =
P (Y ,X )

P (X )
=

1

Z

∏
i

P (yi|pa(yi)) ∝
N∏
i=1

fi(Yi)

where the Yi are not necessarily disjoint. In the language of EP the fi are called sites.

Consider q with the same factorisation, but potentially approximated sites: q(Y)
def
=

N∏
i=1

f̃i(Yi)

Possible optimisations:

min
q(Yi)

KL
[ N∏
i=1

fi(Yi)
∥∥∥ N∏
i=1

f̃i(Yi)
]

(global: intractable)

min
f̃i(Yi)

KL
[
fi(Yi)

∥∥∥f̃i(Yi)] (local, fixed: simple, inaccurate)

min
f̃i(Yi)

KL
[
fi(Yi)

∏
j 6=i

f̃j(Yi)
∥∥∥f̃i(Yi)∏

j 6=i

f̃j(Yi)
]

(local, contextual: iterative, accurate)← EP



Expectation Propagation (EP)

Input f1(Y1) . . . fN(YN)
Initialize f̃1(Y1) = argminf∈{f̃}KL[f1(Y1)‖f (Y1)], f̃i(Yi) = 1 for i > 1,

q(Y) ∝
∏

i f̃i(Yi)
repeat

for i = 1 . . . N do

Deletion: q¬i(Y)← q(Y)

f̃i(Yi)
=
∏
j 6=i

f̃j(Yj)

Projection: f̃new
i (Y)← argmin

f∈{f̃}
KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

Inclusion: q(Y)← f̃new
i (Yi) q¬i(Y)

end for
until convergence



Expectation? Propagation?

EP is really two ideas:

• Approximation of factors, usually by “projection” to exponential families.
This involves finding expected sufficient statistics, hence expectation.

• Local divergence minimization in the context of other factors. This
leads to a message passing approach, hence propagation.



Local updates

Each EP update involves a KL minimisation:

f̃new
i (Y)← argmin

f∈{f̃}
KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

Write q¬i(Y) = q¬i(Yi)q¬i(Y¬i|Yi). Then:

min
f

KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

= max
f

∫
dYidY¬i fi(Yi)q¬i(Y) log f (Yi)q¬i(Y)

= max
f

∫
dYidY¬i fi(Yi)q¬i(Yi)q¬i(Y¬i|Yi)

(
log f (Yi)q¬i(Yi) + log q¬i(Y¬i|Yi)

)
= max

f

∫
dYi fi(Yi)q¬i(Yi)

(
log f (Yi)q¬i(Yi))

∫
dY¬i q¬i(Y¬i|Yi)

= min
f

KL[fi(Yi)q¬i(Yi)‖f (Yi)q¬i(Yi)]

q¬i(Yi) is sometimes called the cavity distribution.



Message Passing

The cavity distribution (in a tree) can be further broken down into a product of terms from
each neighboring clique:

q¬i(Yi) =
∏

j∈ne(i)

m(Yj ∩ Yi)

Once the ith site has been approximated, the messages can be passed on to neighbouring
cliques by marginalising to the shared variables (SSM example follows).

This is exactly the same as belief propagation.

In loopy graphs, we can use loopy belief propagation. In that case

q¬i(Yi) =
∏

j∈ne(i)

m(Yj ∩ Yi)

becomes an approximation to the true cavity distribution.
For some approximations (e.g. Gaussian) may be able to compute true loopy cavity using
approximate sites, even if computing exact message would have been intractable.



EP for a NLSSM

y1 I

I

y2 I

I

y3 I

I

u u u I yT

I
x1 x2 x3 xT

p(yi|yi−1) = φi(yi, yi−1) e.g. exp(−‖yi − hs(yi−1)‖2/2σ2)

p(xi|yi) = ψi(yi) e.g. exp(−‖xi − ho(yi)‖2/2σ2)

Then fi(yi, yi−1) = φi(yi, yi−1)ψi(yi). As φi and ψi are non-linear, inference is not generally
tractable. Assume f̃i(yi, yi−1) is Gaussian. Then,

q¬t(yi, yi−1) =
∑

y1...yt−2
yt+1...yi

∏
i′ 6=i

f̃i′(yi′, yi′−1) =
∑

y1...yi−2

∏
i′<i

f̃i′(yi′, yi′−1)︸ ︷︷ ︸
αi−1(yi−1)

∑
yi+1...yi

∏
i′>i

f̃i′(yi′, yi′−1)︸ ︷︷ ︸
βi(yi)

with both α and β Gaussian.

f̃i(yi, yi−1) = argmin
f∈N

KL
[
φi(yi, yi−1)ψi(yi)αi−1(yi−1)βi(yi)

∥∥f (yi, yi−1)αi−1(yi−1)βi(yi)
]



Moment Matching
Each EP update involves an KL minimisation:

f̃new
i (Y)← argmin

f∈{f̃}
KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

Usually, both q¬i(Yi) and f̃ are in the same exponential family. Let q(x) = 1
Z(θ)e

S(x)·θ. Then

argmin
q

KL
[
p(x)

∥∥q(x)
]

= argmin
θ

KL
[
p(x)

∥∥∥∥ 1

Z(θ)
eS(x)·θ

]
= argmin

θ
−
∫
dx p(x) log

1

Z(θ)
eS(x)·θ

= argmin
θ
−
∫
dx p(x)S(x) · θ + logZ(θ)

∂

∂θ
= −

∫
dx p(x)S(x) +

1

Z(θ)

∂

∂θ

∫
dx eS(x)·θ

= −〈S(x)〉p +
1

Z(θ)

∫
dx eS(x)·θS(x)

= −〈S(x)〉p + 〈S(x)〉q

So minimum is found by matching sufficient stats. This is usually moment matching.

How do we calculate 〈S(x)〉p? Low dimensional integral→ Quadrature, Laplace approx . . .



EP Summary

Input f1(Y1) . . . fN(YN)
Initialize f̃1(Y1) = argminf∈{f̃}KL[f1(Y1)‖f (Y1)], f̃i(Yi) = 1 for i > 1,

q(Y) ∝
∏

i f̃i(Yi)
repeat

for i = 1 . . . N do

Deletion: q¬i(Y)← q(Y)

f̃i(Yi)
=
∏
j 6=i

f̃j(Yj)

Projection: f̃new
i (Y)← argmin

f∈{f̃}
KL[fi(Yi)q¬i(Y)‖f (Yi)q¬i(Y)]

Inclusion: q(Y)← f̃new
i (Yi) q¬i(Y)

end for
until convergence

• Minimizes the opposite KL to variational methods.
• KL minimisation (projection) only depends on q¬i(Y) marginalised to Yi.
• f̃i(Y) in exponential family→ projection step is moment matching.
• Update order need not be sequential.
• Loopy belief propagation and assumed density filtering are special cases.
• No convergence guarantee (although convergent forms can be developed).
• The names (deletion, projection, inclusion) are not the same as in (Minka, 2001).



More. . .

• EP for GP classification.

• Computing moments:

– Often exact computational possible
– Numerical quadrature⇒ “unscented” methods

• Other projection methods:

– Laplace⇒ Laplace propagation

• Computing normalisers.

– “Unnormalised KL”:

KL[p‖q] =

∫
dx p(x) log

p(x)

q(x)
+

∫
dx
(
q(x)− p(x)

)
equivalent to (separately) keeping track of site integrals.



More. . .

• Inconsistent updates:

– skipping
– partial steps
– power EP

• Alpha divergences

Dα[p‖q] =
1

α(1− α)

∫
dxαp(x) + (1− α)q(x)− p(x)αq(x)1−α

D−1[p‖q] =
1

2

∫
dx

(p(x)− q(x))2

p(x)

lim
α→0

Dα[p‖q] = KL[q‖p]

D1
2
[p‖q] = 2

∫
dx (p(x)

1
2 − q(x)

1
2)2

lim
α→1

Dα[p‖q] = KL[p‖q]

D2[p‖q] =
1

2

∫
dx

(p(x)− q(x))2

q(x)



More. . .
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