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Mixtures of Gaussians

Data: X = {x1 . . . xN}

Latent process:

si
iid∼ Disc[π]

Component distributions:

xi | (si = m) ∼ Pm[θm] = N (µm,Σm)

Marginal distribution:

P (xi) =

k∑
m=1

πmPm(x; θm)

Log-likelihood:

log p(X | {µm}, {Σm},π) =

n∑
i=1

log

k∑
m=1

πm |2πΣm|−1/2 exp

[
−1

2
(xi − µm)TΣ−1m (xi − µm)

]



EM for MoGs

• Evaluate responsibilities

rim =
Pm(x)πm∑
m′ Pm′(x)πm′

• Update parameters

µm ←
∑

i rimxi∑
i rim

Σm ←
∑

i rim(xi − µm)(xi − µm)T∑
i rim

πm ←
∑

i rim
N



The Expectation Maximisation (EM) algorithm
The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts from
arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

• Useful in models where learning would be easy if hidden variables were, in fact, observed
(e.g. MoGs).

• Decomposes difficult problems into series of tractable steps.

• No learning rate.

• Framework lends itself to principled approximations.



Jensen’s Inequality
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For αi ≥ 0,
∑
αi = 1 and any {xi > 0}

log

(∑
i

αixi

)
≥
∑
i

αi log(xi)

Equality if and only if αi = 1 for some i (and therefore all others are 0).



The Free Energy for a Latent Variable Model

Observed data X = {xi}; Latent variables Y = {yi}; Parameters θ.

Goal: Maximize the log likelihood (i.e. ML learning) wrt θ:

`(θ) = logP (X|θ) = log

∫
P (Y ,X|θ)dY ,

Any distribution, q(Y), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

`(θ) = log

∫
q(Y)

P (Y ,X|θ)

q(Y)
dY ≥

∫
q(Y) log

P (Y ,X|θ)

q(Y)
dY def

= F(q, θ).

Now, ∫
q(Y) log

P (Y ,X|θ)

q(Y)
dY =

∫
q(Y) logP (Y ,X|θ) dY −

∫
q(Y) log q(Y) dY

=

∫
q(Y) logP (Y ,X|θ) dY + H[q],

where H[q] is the entropy of q(Y).
So:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q]



The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q, θ) = 〈logP (Y ,X|θ)〉q(Y) + H[q],

EM alternates between:

E step: optimize F(q, θ) wrt distribution over hidden variables holding parameters fixed:

q(k)(Y) := argmax
q(Y)

F
(
q(Y), θ(k−1)

)
.

M step: maximize F(q, θ) wrt parameters holding hidden distribution fixed:

θ(k) := argmax
θ

F
(
q(k)(Y), θ

)
= argmax

θ
〈logP (Y ,X|θ)〉q(k)(Y)

The second equality comes from the fact that the entropy of q(Y) does not depend directly
on θ.



EM as Coordinate Ascent in F



The E Step

The free energy can be re-written

F(q, θ)=

∫
q(Y) log

P (Y ,X|θ)

q(Y)
dY

=

∫
q(Y) log

P (Y|X , θ)P (X|θ)

q(Y)
dY

=

∫
q(Y) logP (X|θ) dY +

∫
q(Y) log

P (Y|X , θ)

q(Y)
dY

= `(θ)− KL[q(Y)‖P (Y|X , θ)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed θ, F is bounded above by `, and achieves that bound when
KL[q(Y)‖P (Y|X , θ)] = 0.

But KL[q‖p] is zero if and only if q = p. So, the E step simply sets

q(k)(Y) = P (Y|X , θ(k−1))

and, after an E step, the free energy equals the likelihood.



The KL[q(x)‖p(x)] is non-negative and zero iff ∀x : p(x) = q(x)

First let’s consider discrete distributions; the Kullback-Liebler divergence is:

KL[q‖p] =
∑
i

qi log
qi
pi
.

To find the distribution q which minimizes KL[q‖p] we add a Lagrange multiplier to enforce
the normalization constraint:

E
def
= KL[q‖p] + λ

(
1−

∑
i

qi
)

=
∑
i

qi log
qi
pi

+ λ
(
1−

∑
i

qi
)

We then take partial derivatives and set to zero:

∂E

∂qi
= log qi − log pi + 1− λ = 0⇒ qi = pi exp(λ− 1)

∂E

∂λ
= 1−

∑
i

qi = 0⇒
∑
i

qi = 1

⇒ qi = pi.



The KL[q(x)‖p(x)] is non-negative and zero iff ∀x : p(x) = q(x)

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

∂2E

∂qi∂qi
=

1

qi
> 0,

∂2E

∂qi∂qj
= 0,

showing that qi = pi is a genuine minimum.

At the minimum is it easily verified that KL[p‖p] = 0.

A similar proof holds for KL[·‖·] between continuous densities, the derivatives being substi-
tuted by functional derivatives.



Coordinate Ascent in F (Demo)

One parameter mixture:

s ∼ Bernoulli[π]

x|s = 0 ∼ N [−1, 1] x|s = 1 ∼ N [1, 1]

and one data point x1 = .3.
q(s) is a distribution on a single binary latent, and so is represented by r1 ∈ [0, 1].
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Coordinate Ascent in F (Demo)



EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

`
(
θ(k−1)

)
=

E step
F
(
q(k), θ(k−1)

)
≤

M step
F
(
q(k), θ(k)

)
≤

Jensen
`
(
θ(k)
)
,

• The E step brings the free energy to the likelihood.

• The M-step maximises the free energy wrt θ.

• F ≤ ` by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that θ(k) 6= θ(k−1) iff F increases, then the overall EM iteration
will step to a new value of θ iff the likelihood increases.



Fixed Points of EM are Stationary Points in `
Let a fixed point of EM occur with parameter θ∗. Then:

∂

∂θ
〈logP (Y ,X | θ)〉P (Y|X ,θ∗)

∣∣∣∣
θ∗

= 0

Now, `(θ)= logP (X|θ)= 〈logP (X|θ)〉P (Y|X ,θ∗)

=

〈
log

P (Y ,X|θ)

P (Y|X , θ)

〉
P (Y|X ,θ∗)

= 〈logP (Y ,X|θ)〉P (Y|X ,θ∗) − 〈logP (Y|X , θ)〉P (Y|X ,θ∗)

so, d

dθ
`(θ)=

d

dθ
〈logP (Y ,X|θ)〉P (Y|X ,θ∗) −

d

dθ
〈logP (Y|X , θ)〉P (Y|X ,θ∗)

The second term is 0 at θ∗ if the derivative exists (minimum of KL[·‖·]), and thus:

d

dθ
`(θ)

∣∣∣∣
θ∗

=
d

dθ
〈logP (Y ,X|θ)〉P (Y|X ,θ∗)

∣∣∣∣
θ∗

= 0

So, EM converges to a stationary point of `(θ).



Maxima in F correspond to maxima in `

Let θ∗ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

d2

dθ2
`(θ)=

d2

dθ2
〈logP (Y ,X|θ)〉P (Y|X ,θ∗) −

d2

dθ2
〈logP (Y|X , θ)〉P (Y|X ,θ∗)

The first term on the right is negative (a maximum) and the second term is positive (a mini-
mum). Thus the curvature of the likelihood is negative and

θ∗ is a maximum of `.

[. . . as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt θ rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior
for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

p(x|θ) =

k∑
m=1

p(s = m|θ)p(x|s = m, θ) ∝
k∑

m=1

πm
σm

exp
{
− 1

2σ2m

(
x− µm)2

}
,

where θ is the collection of parameters: means µm, variances σ2m and mixing proportions
πm = p(s = m|θ).

The hidden variable si indicates which component observation xi belongs to.
The E-step computes the posterior for si given the current parameters:

q(si)= p(si|xi, θ) ∝ p(xi|si, θ)p(si|θ)

rim
def
= q(si = m)∝ πm

σm
exp
{
− 1

2σ2m
(xi − µm)2

}
(responsibilities)

with the normalization such that
∑

m rim = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

E = 〈log p(x, s|θ)〉q(s) =
∑

q(s) log[p(s|θ) p(x|s, θ)]

=
∑
i,m

rim
[

log πm − log σm −
1

2σ2m
(xi − µm)2

]
.

Optimization is done by setting the partial derivatives of E to zero:

∂E

∂µm
=
∑
i

rim
(xi − µm)

2σ2m
= 0⇒ µm =

∑
i rimxi∑
i rim

,

∂E

∂σm
=
∑
i

rim

[
− 1

σm
+

(xi − µm)2

σ3m

]
= 0⇒ σ2m =

∑
i rim(xi − µm)2∑

i rim
,

∂E

∂πm
=
∑
i

rim
1

πm
,

∂E

∂πm
+ λ = 0⇒ πm =

1

n

∑
i

rim,

where λ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

y1 yK

x1 x2 xD

Linear generative model: xd =

K∑
k=1

Λdk yk + εd

• yk are independent N (0, 1) Gaussian factors
• εd are independent N (0,Ψdd) Gaussian noise
• K<D

So, x is Gaussian with: p(x) =

∫
p(y)p(x|y)dy = N (0,ΛΛ> + Ψ)

where Λ is a D ×K matrix, and Ψ is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

y1 yK

x1 x2 xD

The model for x:

p(x|θ) =

∫
p(y|θ)p(x|y, θ)dy = N (0,ΛΛ> + Ψ)

Model parameters: θ = {Λ,Ψ}.

E step: For each data point xn, compute the posterior distribution of hidden factors given
the observed data: qn(y) = p(y|xn, θt).

M step: Find the θt+1 that maximises F(q, θ):

F(q, θ) =
∑
n

∫
qn(y) [log p(y|θ) + log p(xn|y, θ)− log qn(y)] dy

=
∑
n

∫
qn(y) [log p(y|θ) + log p(xn|y, θ)] dy + c.



The E step for Factor Analysis

E step: For each data point xn, compute the posterior distribution of hidden factors given
the observed data: qn(y) = p(y|xn, θ) = p(y, xn|θ)/p(xn|θ)

Tactic: write p(y, xn|θ), consider xn to be fixed. What is this as a function of y?

p(y, xn) = p(y)p(xn|y)

= (2π)−
K
2 exp{−1

2
y>y} |2πΨ|−

1
2 exp{−1

2
(xn − Λy)>Ψ−1(xn − Λy)}

= c× exp{−1

2
[y>y + (xn − Λy)>Ψ−1(xn − Λy)]}

= c’× exp{−1

2
[y>(I + Λ>Ψ−1Λ)y − 2y>Λ>Ψ−1xn]}

= c”× exp{−1

2
[y>Σ−1y − 2y>Σ−1µ + µ>Σ−1µ]}

So Σ = (I + Λ>Ψ−1Λ)−1 = I − βΛ and µ = ΣΛ>Ψ−1xn = βxn. Where β = ΣΛ>Ψ−1.
Note that µ is a linear function of xn and Σ does not depend on xn.



The M step for Factor Analysis

M step: Find θt+1 maximising F =
∑

n

∫
qn(y) [log p(y|θ) + log p(xn|y, θ)] dy + c

log p(y|θ)+ log p(xn|y, θ) = c− 1

2
y>y − 1

2
log |Ψ| − 1

2
(xn − Λy)>Ψ−1(xn − Λy)

= c’− 1

2
log |Ψ| − 1

2
[xn
>Ψ−1xn − 2xn

>Ψ−1Λy + y>Λ>Ψ−1Λy]

= c’− 1

2
log |Ψ| − 1

2
[xn
>Ψ−1xn − 2xn

>Ψ−1Λy + Tr
[
Λ>Ψ−1Λyy>

]
]

Taking expectations over qn(y). . .

= c’− 1

2
log |Ψ| − 1

2
[xn
>Ψ−1xn − 2xn

>Ψ−1Λµn + Tr
[
Λ>Ψ−1Λ(µnµn

> + Σ)
]
]

Note that we don’t need to know everything about q, just the expectations of y and yy> under
q (i.e. the expected sufficient statistics).



The M step for Factor Analysis (cont.)

F = c’− N

2
log |Ψ| − 1

2

∑
n

[
xn
>Ψ−1xn − 2xn

>Ψ−1Λµn + Tr
[
Λ>Ψ−1Λ(µnµn

> + Σ)
]]

Taking derivatives w.r.t. Λ and Ψ−1, using ∂Tr[AB]
∂B = A> and ∂ log |A|

∂A = A−>:

∂F
∂Λ

= Ψ−1
∑
n

xnµn
> − Ψ−1Λ

(
NΣ +

∑
n

µnµn
>

)
= 0

Λ̂= (
∑
n

xnµn
>)

(
NΣ+

∑
n

µnµn
>

)−1
∂F
∂Ψ−1

=
N

2
Ψ− 1

2

∑
n

[
xnxn

> − Λµnxn
> − xnµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂ =

1

N

∑
n

[
xnxn

> − Λµnxn
> − xnµn

>Λ> + Λ(µnµn
> + Σ)Λ>

]
Ψ̂= ΛΣΛ>+

1

N

∑
n

(xn − Λµn)(xn − Λµn)> (squared residuals)

Note: we should actually only take derivarives w.r.t. Ψdd since Ψ is diagonal.
When Σ→ 0 these become the equations for linear regression!



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|θ) =
∑
k

πk N (µk,ΛkΛ
>
k + Ψ)

where πk is the mixing proportion for FA k, µk is its centre, Λk is its “factor loading matrix”,
and Ψ is a common sensor noise model. θ = {{πk, µk,Λk}k=1...K,Ψ}
We can think of this model as having two sets of hidden latent variables:

• A discrete indicator variable sn ∈ {1, . . . K}
• For each factor analyzer, a continous factor vector yn,k ∈ RDk

p(x|θ) =

K∑
sn=1

p(sn|θ)

∫
p(y|sn, θ)p(xn|y, sn, θ) dy

As before, an EM algorithm can be derived for this model:

E step: Infer joint distribution of latent variables, p(yn, sn|xn, θ)

M step: Maximize F with respect to θ.



EM for exponential families
EM is often applied to models whose joint over z = (y, x) has exponential form:

p(z|θ) = f (z) exp{θTT(z)}/Z(θ)

with Z(θ) =
∫
f (z) exp{θTT(z)}dz (whilst the marginal p(x) does not).

The free energy dependence on θ is given by:

F(q, θ) =

∫
q(y) log p(y, x|θ)dy −H(q)

=

∫
q(y)[θTT(z)− logZ(θ)]dy + const

= θT〈T(z)〉q(y) − logZ(θ) + const

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:

∂ logZ(θ)

∂θ
=

1

Z(θ)

∂

∂θ
Z(θ) =

1

Z(θ)

∫
f (z)

∂

∂θ
exp{θTT(z)}

=

∫
f (z) exp{θTT(z)}/Z(θ)︸ ︷︷ ︸

p(z|θ)

·T(z) = 〈T(z)|θ〉

Thus, the M step solves:
∂F
∂θ

= 〈T(z)〉q(y) − 〈T(z)|θ〉 = 0
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Proof of the Matrix Inversion Lemma

(A + XBX>)−1 = A−1 − A−1X(B−1 + X>A−1X)−1X>A−1

Need to prove: (
A−1 − A−1X(B−1 + X>A−1X)−1X>A−1

)
(A + XBX>) = I

Expand:

I + A−1XBX> − A−1X(B−1 + X>A−1X)−1X> − A−1X(B−1 + X>A−1X)−1X>A−1XBX>

Regroup:

= I + A−1X
(
BX> − (B−1 + X>A−1X)−1X> − (B−1 + X>A−1X)−1X>A−1XBX>

)
= I + A−1X

(
BX> − (B−1 + X>A−1X)−1B−1BX> − (B−1 + X>A−1X)−1X>A−1XBX>

)
= I + A−1X

(
BX> − (B−1 + X>A−1X)−1(B−1 + X>A−1X)BX>

)
= I + A−1X(BX> −BX>) = I



Proof of the Matrix Inversion Lemma
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