
Assignment 4

Probabilistic and Unsupervised Learning

Maneesh Sahani & Yee Whye Teh

Due: Thu Dec 6, 2012

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS department.
Assignments are due at the beginning of the lecture or tutorial on the due date. Late assignments
(included those handed in later on the due day) will be penalised. If you are unable to attend, you may
hand in your assignment to either lecturer or TA prior to the due time, or to Barry Fong in the Alexandra
House 4th oor reception. Do not leave them with anyone else.

Please attempt the first questions before the bonus ones.

1. [70 marks] Mean-field learning

Consider a binary latent factor model. This is a model with a vector s of K binary latent variables,
s = (s1, . . . , sK), a real-valued observed vector x and parameters θ = {{µi, πi}Ki=1, σ

2}. The model is
described by:

p(s|π) = p(s1, . . . , sK |π) =

K∏
i=1

p(si|πi) =

K∏
i=1

πsii (1− πi)(1−si)

p(x|s1, . . . , sK ,µ, σ2) = N

(∑
i

siµi, σ
2I

)

where x is a D-dimensional vector and I is the D ×D identity matrix. Assume you have a data set
of N i.i.d. observations of x, i.e. X = {x(1), . . . , x(N)}.
Matlab hint: Wherever possible, avoid looping over the data points. Many (but not all) of these
functions can be written using matrix operations. In Matlab it’s much faster.

Warning: Each question depends on earlier questions. Start as soon as possible.

Hand in: Derivations, code and plots.

We will implement generalized EM learning using the fully factored (a.k.a. mean-field) variational
approximation for the model above. That is, for each data point x(n), we will approximate the
posterior distribution over the hidden variables by a distribution:

qn(s(n)) =
K∏
i=1

λ
s
(n)
i
in (1− λin)(1−s

(n)
i )

and find the λ(n)’s that maximize Fn holding θ fixed.

(a) Write a Matlab function:

[lambda,F] = MeanField(X,mu,sigma,pie,lambda0,maxsteps)

where lambda is N ×K, F is the lower bound on the likelihood, X is the N ×D data matrix (X ),
mu is the D × K matrix of means, pie is the 1 × K vector of priors on s, lambda0 are initial
values for lambda and maxsteps are maximum number of steps of the fixed point equations.
You might also want to set a convergence criterion so that if F changes by less than some very
small number ε the iterations halt. [20 marks]



(b) We have derived the M step for this model in terms of the quantities: X, ES = Eq[s], which is
an N ×K matrix of expected values, and ESS, which is an N ×K ×K array of expected values
Eq[ss>] for each n. The full derivation is provided in Appendix B. Write two or three sentences
discussing how the solution relates to linear regression and why. [5 marks]

(c) Using the above, we have implemented a function:

[mu, sigma, pie] = MStep(X,ES,ESS)

This can be implemented either taking in ESS = a K×K matrix summing over N the ESS array
as defined above, or taking in the full N ×K×K array. This code can be found in Appendix C
and can also be found on the web site. Study this code and figure out what the computational
complexity of the code is in terms of N , K and D for the case where ESS is K × K. Write
out and justify the computational complexity; don’t assume that any of N , K, or D is large
compared to the others. [5 marks]

(d) Examine the data images.jpg shown on the web site (Do not look at genimages.m yet!). This
shows 100 greyscale 4× 4 images generated by randomly combining several features and adding
a little noise. Try to guess what these features are by staring at the images. How many are
there? Would you expect factor analysis to do a good job modelling this data? How about
ICA? mixture of Gaussians? Explain your reasoning. [10 marks]

(e) Put the E step and M step code together into a function:

[mu, sigma, pie] = LearnBinFactors(X,K,iterations)

where K is the number of binary factors, and iterations is the maximum number of iterations
of EM. Include a check that F increases at every iteration (this is a good debugging tool). [10
marks]

(f) Run your algorithm for learning the binary latent factor model on the data set generated by
genimages.m. What features mu does the algorithm learn (rearrange them into 4× 4 images)?
How could you improve the algorithm and the features it finds? Explain any choices you make
along the way and the rationale behind them (e.g. what to set K, how to initialize parameters,
hidden states, and lambdas). [10 marks]

(g) For the setting of the parameters learned in the previous step, run the variational approxima-
tion for just the first data point (i.e. to find q1(s(1))) (i.e. set N = 1). Convergence of a
variational approximation results when the value of λ’s as well as F stops changing. Plot F

and log(F(t)-F(t-1)) as a function of iteration number t for MeanField. How rapidly does
it converge? Plot F for three widely varying sigmas. How is this affected by increases and
decreases of sigma? Why? Support your arguments. [10 marks]

2. [10 marks] Bayesian Model Selection Describe a Bayesian method for selecting K, the number
of hidden binary variables in this model. Does your method pose any computational difficulties and
if so how would you tackle them?

3. [15 marks] Posterior and Loopy Belief Propagation

(a) For the model in Question 1, show that the posterior distribution over s given x can be expressed
as a Boltzmann machine. [5 marks]

(b) Suppose instead of mean field inference, you wish to use loopy belief propagation for inference.
Describe at a high level the changes to the approach in Question 1 to accommodate using loopy
belief propagation. What would you use for Eq[s] and Eq[ss>]? Would the resulting approximate
EM algorithm be guaranteed to converge?



4. [5 marks] Binary MRF and Boltzmann Machines In the max-cut/min-flow lecture we described
a binary attractive MRF as a joint distribution over binary variables Xi ∈ {0, 1} parametrized by:

p(X) ∝ exp

∑
(ij)

Wijδ(Xi = Xj) +
∑
i

ciXi


Show that this distribution can also be parametrized by a Boltzmann machine. Describe how the
parameters of the Boltzmann machine relate to the parameters of the binary attractive MRF above.
Can any Boltzmann machine be parametrized as a (not necessarily attractive) binary MRF?

5. [Bonus 5 marks] Inconsistency of Local Marginals Loopy belief propagation approximates the
distribution over a pairwise MRF using a set of locally consistent beliefs {bi(xi), bij(xi, xj)}:∑

xi

bi(xi) = 1 for all i;∑
xi

bij(xi, xj) = bj(xj) for all i, j and xj .

Give an example set of beliefs that are locally consistent but not globally consistent. That is, there
is no distribution p(X) over all variables such that

p(Xi = xi) = bi(xi) for all i, xi;

p(Xi = xi, Xj = xj) = bij(xi, xj) for all i, j, xi, xj .

Explain why this set of beliefs is not globally consistent. Hint: the MRF has to contain at least a
loop since for tree-structured distributions local consistency implies global consistency.

6. [Bonus 5 marks] Inconsistency of Local Marginals (contd) Give an example of a graphical
model with specific parameter settings, such that the local marginals you came up with in the previous
question is a fixed point of the loopy belief propagation algorithm run on this model.



Appendix: M-step for Assignment [5]
Iain Murray

December 20031

A Background

The generative model under consideration has a vector of K binary latent variables s. Each D-dimensional
data point x(n) is generated using a new hidden vector, s(n). Each s(n) is identically and independently
distributed according to:

P
(
s(n)|π

)
=

K∏
i=1

π
s
(n)
i

i (1− πi)(1−s
(n)
i ). (1)

Once s(n) has been generated, the data point is created according to the Gaussian distribution:

p
(
x(n)

∣∣∣ s(n),µ, σ2) = (2πσ2)−D/2 exp

− 1

2σ2

(
x(n) −

K∑
i=1

s
(n)
i µi

)>(
x(n) −

K∑
i=1

s
(n)
i µi

) . (2)

When this process is repeated we end up obtaining a set of visible data X = {x(1), . . . , x(N)} generated
by a set of N binary vectors S = {s(1), . . . , s(N)} and some model parameters θ = {µ, σ2,π}, which are
constant across all the data. Given just X , both S and θ are unknown. We might want to find the set of
parameters that maximise the likelihood function P (X|θ); “the parameters that make the data probable”.
EM is an approach towards this goal which takes our knowledge about the uncertain S into account.

In the EM algorithm we optimise the objective function

F(q,θ) = 〈log p (S,X|θ)〉q(S) − 〈log q (S)〉q(S)
=
∑
n

〈
log p

(
s(n), x(n)

∣∣∣θ)〉
q(s(n))

−
∑
n

〈
log q

(
s(n)
)〉

q(s(n))
,

(3)

alternately increasing F by changing the distribution q (S) in the “E-step”, and the parameters in the
“M-step”. This document gives a derivation and Matlab implementation of the M-step. In this assignment
you will implement a variational E-step and apply this EM algorithm to a data set.

1Modified to match updated notation in 2006



B M-step derivation

Here we maximise F with respect to each of the parameters using differentiation. This only requires the
term with θ dependence:∑

n

〈
log p

(
s(n), x(n)

∣∣∣θ)〉
q(s(n))

=
∑
n

〈
log p

(
x(n)|s(n),θ

)
+ logP

(
s(n)|θ

)〉
q(s(n))

(4)

Substituting the given distributions from equations 2 and 1 gives:

=− ND

2
log 2π −ND log σ

− 1

2σ2

 N∑
n=1

x(n)>x(n) +
∑
i,j

µ>i µj

N∑
n=1

〈
s
(n)
i s

(n)
j

〉
q(s(n))

− 2
∑
i

µ>i

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

x(n)


+

K∑
i=1

[
logπi

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

+ log (1− πi)

(
N −

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

)]
.

(5)

From which we can obtain all the required parameter settings:

∂F
∂πi

=
1

πi

N∑
n=1

〈
s
(n)
i

〉
q(s(n))

+
1

1− πi

[
N∑

n=1

〈
s
(n)
i

〉
q(s(n))

−N

]
= 0 (6)

⇒ π = 1
N

∑N
n=1

〈
s(n)
〉
q(s(n)) , (7)

∂F
∂µi

= − 1

σ2

N∑
n=1

∑
j

〈
s
(n)
i s

(n)
j

〉
q(s(n))

−
〈
s
(n)
i

〉
q(s(n))

x(n)


∑
j

N∑
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〈
s
(n)
i s

(n)
j

〉
q(s(n))

µj =
N∑

n=1

〈
s
(n)
i

〉
q(s(n))

x(n)

(8)

⇒ µj =
∑

i

[∑N
n=1

〈
s(n)s(n)>

〉
q(s(n))

]−1
ji

∑N
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〈
s
(n)
i

〉
q(s(n))

x(n) (9)

and

∂F
∂σ

=0⇒
σ2 = 1
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[∑N
n=1 x
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∑
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>
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〈
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(n)
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j
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∑

i µ
>
i

∑N
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s
(n)
i

〉
q(s(n))

x(n)
] . (10)

Note that the required sufficient statistics of q (S) are
〈
s(n)
〉
q(s(n)) and

∑N
n=1

〈
s(n)s(n)>

〉
q(s(n)). In the code

these are known as ES and ESS.

All of the sums above can be interpreted as matrix multiplication or trace operations. This means that
each of the boxed parameters above can neatly be computed in one line of Matlab.



C M-step code

MStep.m

% [mu, sigma , p i e ] = MStep (X, ES , ESS)
%
% Inpu t s :
% −−−−−−−−−−−−−−−−−
% X NxD data mat r i x
% ES NxK E q [ s ]
% ESS KxK sum ove r data p o i n t s o f E q [ ss ’ ] (NxKxK)
% i f E q [ ss ’ ] i s p rov ided , the sum ove r N i s done f o r you .
%
% Outputs :
% −−−−−−−−
% mu DxK mat r i x o f means i n p ( y | { s i } ,mu, s igma )
% sigma 1x1 s t anda rd d e v i a t i o n i n same
% p i e 1xK v e c t o r o f pa ramete r s s p e c i f y i n g g e n e r a t i v e d i s t r i b u t i o n f o r s
%

funct ion [mu, sigma , p i e ] = MStep (X, ES , ESS)

[N,D] = s i z e (X ) ;
i f ( s i z e (ES,1)˜=N) , e r ro r ( ’ES must have the same number o f rows as X ’ ) ; end ;
K = s i z e (ES , 2 ) ;
i f ( i s e q u a l ( s i z e (ESS ) , [N,K,K ] ) ) , ESS = s h i f t d im (sum(ESS , 1 ) , 1 ) ; end ;
i f (˜ i s e q u a l ( s i z e (ESS ) , [K,K ] ) )

e r ro r ( ’ESS must be squa r e and have the same number o f columns as ES ’ ) ;
end ;

mu = ( inv (ESS)∗ES ’∗X) ’ ;
s igma = sqr t ( ( trace (X’∗X)+ trace (mu’∗mu∗ESS)−2∗ trace (ES ’∗X∗mu) ) / (N∗D) ) ;
p i e = mean(ES , 1 ) ;
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