Probabilistic & Unsupervised Learning

Expectation Propagation

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science
University College London

Term 1, Autumn 2012

Approximation

Makes sense to consider g closest to P in some sense.

q = argmin D(P||q)
qeQ

» metric for closeness?
> constraint space Q?

Variational methods use D = KL[q|| P]. Factored constraints lead to efficient message
passing approaches. What about other divergences?

Variational Methods

Free energy:
F(a,0) = (log P(X, Y(0)) gy 1) + Hla] = log P(X]0) — KL[g(Y) | P(V| X, 0)] < £(0)

E-steps:
» Exact EM:
q(Y) = argmax F = P()|X, 0)
q

» Saturates bound: converges to max likelihood.

» (Factored) variational approximation:

q(Y) = argmax F = argmin KL[gi(J1)q()2)|P(V|X,0)]
q1(V1)q2(Y2) q1(V1)q2(2)

> Increases bound: provably converges, but not necessarily to ML.

» Other approximations:
q(¥) = P(¥|X,0)

» Usually no guarantee, but if converges may be more accurate than factored approx.

The Other KL

What about the ‘other’ KL (g = argmin KL[P]|q])?

For a factored approximation the (clique) marginals obtained by minimising this KL are
correct:

argqunin KL[P(J)\X)HH@(JJ,-\X)] = argqcnin—/dy P(Y|X) Ioquj(yj|X)

gi

= argmian/dy P(Y]X)log g;(J}|X)
J

= argmin — / dY; P(Yi|X)log qi(Vi|X)

qi

= PI[X)

and the marginals are what we need for learning (although if factored over disjoint sets as in
the variational approximation some cliques will be missing).

Perversely, this means finding the best g for this KL is intractrable! But if we can minimise it
approximately we might still get decent results.

Approximate Optimisation

The posterior distribution in a graphical model is a (normalised) product of factors:

P(YIX) = P(y X) HPy,Ipa) och,y,

where the); are not necessarily disjoint. In the language of EP the f; are called sites.

N
Consider g with the same factorisation, but potentially approximated sites: g()) ef H ()
i=1

Possible optimisations:

N
r?m KL [Hf,) HHf,)] (global: intractable)
m|n KL [f,()ﬁ,)Hf,-(M)] (local, fixed: simple, inaccurate)
f/(l

‘min KL [ﬁ(y, [16Y H) Hf Vi] (local, contextual: iterative, accurate) < EP
(Vi)
j#i

Expectation? Propagation?

EP is really two ideas:

» Approximation of factors, usually by “projection” to exponential
families. This involves finding expected sufficient statistics, hence
expectation.

» Local divergence minimization in the context of other factors. This
leads to a message passing approach, hence propagation.

Expectation Propagation (EP)

Input f (y1) fn(In)
Initialize 7 (y1) = argmin,¢ 7y KL[A (D1)[[£(1)], (V) =1fori>1,
q(¥) o IT, ()
repeat
fori=1...Ndo o)
Deletion: qﬁ,(y) — ()
() E !
Projection: £ () « argmin KL[(V,)q-i(V) /(Y1) g-(V)]
re{f
Inclusion: g() « 7"V () g-i())
end for
until convergence

Local updates

Each EP update involves a KL minimisation:

(V) argrj}in KL% (D) g~V a-i(V)]

Write g-/(Y) = g-1(31)q-i(V-i|Y}). Then:
min KL[f(3)q-(V)IIf(V1)a-(Y)]
— max / VY- () q-i(Y) log (V1) ai(Y)
= max / dYidY-i f(V)q-i(¥)q-i(Y-i1Y1) (log (¥1)q-i(V) + log g-i(¥-i1)7))

— max [dY,1(3)q-() (1og () (3) [d¥-ia-s(-1¥)
= minKL[#:(V1)q-i(V) /(31 a-i1(37)]

q-i()) is sometimes called the cavity distribution.

Message Passing

The cavity distribution (in a tree) can be further broken down into a product of terms from
each neighbouring clique:

qﬁ/ yr H my/ﬂy/)

j€ne(i)

Once the ith site has been approximated, the messages can be passed on to neighbouring
cliques by marginalising to the shared variables (SSM example follows).

This is exactly the same as belief propagation.

In loopy graphs, we can use loopy belief propagation. In that case

a-(V) = [] mn¥)

jene(i)

becomes an approximation to the true cavity distribution.
For some approximations (e.g. Gaussian) may be able to compute true loopy cavity using
approximate sites, even if computing exact message would have been intractable.

Moment Matching
Each EP update involves an KL minimisation:
(V) = argmin KL[(2)g-(D) (V) g-1(V)]
fe{f}

Usually, both g-;();) and 7 are in the same exponential family. Let g(x) = ﬁes(x)“’. Then

Z(0)

arg;nin KL [p(x)||a(x)] = arg(;nin KL [p(x) 1 es(x).e}

= argmin — | dx p(x)lo S0
or / p(x) gz(g)

= arg;nin - / dx p(x)S(x) - 6 + log Z(6)

% :—/dxp(x)s(x)+ (1)860/d S0
— (S0, + ﬁ / ox 5905 (x)
= —(S(x)), + (8(x)),

So minimum is found by matching sufficient stats. This is usually moment matching.
How do we calculate (S(x)),? Low dimensional integral — Quadrature, Laplace approx ...

EP for a NLSSM

T
© © ®

p(yilyi-1) = ¢i(¥i, Yi-1) e.g. exp(—|lyi — hs(yi—1)|* /207)
p(xily:) = i(yi) e.g. exp(—|[x — ho(y;)|[*/20°)

Then fi(yi, yi—1) :~¢/(y;, yi—1)¥i(yi). As ¢; and 1); are non-linear, inference is not generally
tractable. Assume fi(y;, yi—1) is Gaussian. Then,

q-t y! yi— 1 Z Hf Yir,Yir— 1 Z Hf Yir,Yir— 1 Z Hf Yir,Yir— 1

Yt—2 1 #i —2i'<i Yigt---Yi il >i
Vr+1 -Yi

aj—1(Yi—1) Bi(yi)

with both o and 3 Gaussian.

fi(yi, yi-1) = arf%rjr\}in KL iy, Vi 1)di(yi) i (Vi) Bi(yi) || F(¥ir Vie1) i1 (Yie1) Bi(¥1)]

EP Summary

Input 7 ()}1) fn(In)
Initialize 7 (yw) = argmin, i, KL[f (V1)[[f(O1)], (V) =1fori>1,

repeat
fori=1...Ndo

Deletion: g-:()) 9(32) H ()

i)
Projection: 7" () « argmin KL[f(),)q-i()[|f(¥1)q-i(P)]
re(iy
Inclusion: g() + 7"V () g-i())

end for
until convergence

Minimizes the opposite KL to variational methods.

KL minimisation (projection) only depends on g-;()’) marginalised to V.

f,(y) in exponential family — projection step is moment matching.

Update order need not be sequential.

Loopy belief propagation and assumed density filtering are special cases.

No convergence guarantee (although convergent forms can be developed).

The names (deletion, projection, inclusion) are not the same as in (Minka, 2001).

vVVvyVvVVvyVvVVvYyyYy

More... More...

» Inconsistent updates:

v

EP for GP classification.

> skipping
» Computing moments: > partial steps
» Often exact computational possible » power EP

> Numerical quadrature = “unscented” methods

> Alpha divergences
Other projection methods:

v

» Laplace = Laplace propagation Dalpllq] = ¢ 1 5 /dx ap(x) + (1 — a)a(x) — p(x)*q(x)"
» Computing normalisers. @ ,

> “Unnormalised KL: D_i[pllg] = %/dx (p(x) EXC)I(X))

p
X
KL[pllq] = /dxp(x) IogM +/dx (a(x) = p(x)) lim Da[pllq] = KL[q||p]
q(X) a—0
equivalent to (separately) keeping track of site integrals. D% [pllq] = g/dx (p(x)% _ q(X)%f

lim Da[pllq] = KL[pl|q]
a—1

D:[pllq] = %/dxw

