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Mixtures of Gaussians

Log-likelihood:

Data: X ={x;...xy}
Latent process:
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Component distributions:
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EM for MoGs

e Evaluate responsibilities
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The Expectation Maximisation (EM) algorithm

The EM algorithm finds a (local) maximum of a latent variable model likelihood. It starts from
arbitrary values of the parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.

M step: Maximise likelihood as if latent variables were not hidden.

e Useful in models where learning would be easy if hidden variables were, in fact, observed
(e.g. MoGs).

e Decomposes difficult problems into series of tractable steps.
e No learning rate.
e Framework lends itself to principled approximations.



Jensen’s Inequality

log(a x, + (1) x,)|
a log(x,) + (1-a) log(x,)|

Fora; > 0,> «a; =1andany {x; > 0}

log <Z Ozzwz) > Z a; log(;)

Equality if and only if o; = 1 for some ¢ (and therefore all others are 0).



The Free Energy for a Latent Variable Model
Observed data X' = {x;}; Latent variables Y = {y; }; Parameters 6.

Goal: Maximize the log likelihood (i.e. ML learning) wrt 6:
((6) = log P(X18) = o | P(Y,X|6)dy

Any distribution, ¢()’), over the hidden variables can be used to obtain a lower bound on the
log likelihood using Jensen’s inequality:

_ Py, X10) 5 PV, X|0) . def
((0) —1Og/q(37) ) dy > /q(y)l 5 o) 4y < Flq,0).

/ ) log - %’(’;jw) 1y — / a(V)log P(Y, X0) dY — / log ()

Now,

z/q(y)logP(y,X ) dY + H|q|

where H|q| is the entropy of ¢())).
So:
F(gq,0) = (log P(¥, X10)) (3 + Hlg]



The E and M steps of EM

The lower bound on the log likelihood is given by:
F(q,0) = (log P(Y, X10)) . + Hldl,

EM alternates between:
E step: optimize F(q, ) wrt distribution over hidden variables holding parameters fixed:

q(k)OJ) = argmax F(Q(y>7 ‘9<k_1>)‘
q(Y)

M step: maximize F(q, ) wrt parameters holding hidden distribution fixed:

ok) . — argmax ]:(q(/’v')(y), 9) = argmax (log P(), X|9)>q(k)(y)
0 0

The second equality comes from the fact that the entropy of ¢()’) does not depend directly
on 6.



EM as Coordinate Ascent in F
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The E Step

The free energy can be re-written

Py, X|0)
)
P(Y|X,6)P(X|6)

/ )log q(Y)
/ )log P(X|0) dY + /q(y) log
((0) DPY]X,0)]

The second term is the Kullback-Leibler divergence.

Flq,0)= / 2(Y) log

dy

PY|X,0)
q()

dYy

This means that, for fixed 6, F is bounded above by ¢, and achieves that bound when

KL[g(V)[[P(Y|X,0)] = 0.
But KL|¢||p| is zero if and only if ¢ = p. So, the E step simply sets

(M) =Pylx,0"Y)

and, after an E step, the free energy equals the likelihood.



The KL |¢(x)||p(x)] is non-negative and zero iff Vo : p(x) = q(x)

First let's consider discrete distributions; the Kullback-Liebler divergence is:
QHP Z q; log N

To find the distribution ¢ which minimizes KL|q||p] we add a Lagrange multiplier to enforce
the normalization constraint:

EdffKLqu —I—)\l—ZqZ Zqzlog —I—)\l—ZqZ

We then take partial derivatives and set to zero:
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The KL |¢(x)||p(x)] is non-negative and zero iff Vo : p(x) = q(x)

Check that the curvature (Hessian) is positive (definite), corresponding to a minimum:

OPE 1 O’FE
= — >0, = 0,
09;0q; g 8qz-8qj

showing that ¢; = p; is a genuine minimum.
At the minimum is it easily verified that KL|p||p] = 0.

A similar proof holds for KL|-||-] between continuous densities, the derivatives being substi-
tuted by functional derivatives.



Coordinate Ascent in / (Demo)

One parameter mixture:

s ~ Bernoulli|r]

rls=0~N[-1,1] xz|s=1~N]1,1]

and one data point z; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].
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EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

e The E step brings the free energy to the likelihood.
e The M-step maximises the free energy wrt 6.
e F </ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that (%) £ 9~ iff F increases, then the overall EM iteration
will step to a new value of @ iff the likelihood increases.



Fixed Points of EM are Stationary Points in /
Let a fixed point of EM occur with parameter 6*. Then:

0

76" =0

9*

1ng<y X | (9)> P(Y|X,6%)

Now, ((0)= log P(X|0)= (log P(X10)) p(y|x )

(S RET) 0

= (log P(V, X|0)) py|x g+) — {log P(V|X,0)) py1x )

SO, d d d

The second term is 0 at 6* if the derivative exists (minimum of KL|[-||-]), and thus:

d d

log P( |X, ‘9>>P()/\X,0*)

So, EM converges to a stationary point of £(6).



Maxima in F correspond to maxima in /¢

Let 6% now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt 6 again we find

d? d? d?

dmé(@) d92<logP(y X|0)) y‘;{g*)—amz(logP(MX 0))p POYIX.0%)

The first term on the right is negative (a maximum) and the second term is positive (a mini-
mum). Thus the curvature of the likelihood is negative and

0™ is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

Partial E steps: We can also just increase F wrt to some of the g¢s.
For example, sparse or online versions of the EM algorithm would compute the posterior

for a subset of the data points or as the data arrives, respectively. You can also update the
posterior over a subset of the hidden variables, while holding others fixed...



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

p(elf) = 3" pls = miB)p(als = m,0) o 3" exp { — (1 — )},

2
o o)
m=1 m m

where 6 is the collection of parameters: means p,,, variances J% and mixing proportions
Tm = p(s = ml@).

The hidden variable s; indicates which component observation x; belongs to.

The E-step computes the posterior for s; given the current parameters:

q(si)= p(si|zi, 0) o< p(xi|si, )p(si|0)

e m 1 i
Fim = (s = m)ox 2 exp { — —(x; — )’} (responsibilities) <« (Js._,)

T 202 1

with the normalization such that > r;,, = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):
E = (log p(z, 5|0)), Zq )log[p(s|@) p(x|s, )]
1

— Z?"Z’m lOg’ﬂ'm_logO_m_ E(xl _Ium)Q]

1,m

Optimum is found by setting the partial derivatives of £ to zero:
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where )\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



Factor Analysis

K

Linear generative model: x; = Z Nar yr + €4

k=1
e ;. are independent A/(0, 1) Gaussian factors

e ¢, are independent A/ (0, V,4;) Gaussian noise
e K <D

So, x is Gaussian with: p(x) — / p(y)p(xly)dy = N0, AAT + W)
where Ais a D x K matrix, and V is diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data
that captures the correlation structure of the data.



EM for Factor Analysis

The model for x:

p(x|6) = / plyl6)p(xly, 0)dy = (0, AAT + W)

Model parameters: § = {A\, V}.

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: ¢,(y) = p(y|x,, 0;).

M step: Find the 6,.; that maximises F(q, 0):

Flg.0) = 3 / 4u(y) [log p(y16) + log p(xuly, 6) — log ga(y)] dy

= 3" [ aly) losnyl6) + loxpix,ly. 6)) dy +



The E step for Factor Analysis

E step: For each data point x,,, compute the posterior distribution of hidden factors given
the observed data: g,(y) = p(y|xs, #) = p(y, xn|0)/p(x5|0)

Tactic: write p(y, x,,|#), consider x,, to be fixed. What is this as a function of y?

p(Y, %) = p(y)p(Xnly)

1 1
= (2m) ¥ exp{—y Ty} [200] b exp{— 0, — Ay) W, — Ay))
1

C X exp{—§[yTy + (%, — /\Y)TW_1<Xn —Ny)|}

1
= &' x exp{—sly (7 + ATV A)y — 2y ATV I, ]}

T . .
= ¢ xoxp{—gly' Ty =2y T4 p 2}

SoY =(+AN VNt =T—pBANand p= XNV Ix, = Bx,. Where § = LAV,
Note that 1 is a linear function of x,, and . does not depend on x,,.



The M step for Factor Analysis

M step: Find 0,1 by maximising F = Z (log p(y|0) + log p(x,|y, 9)>qn(y) +cC

1 1 1 .
log p(y[6)+log p(x,ly, )= ¢ — §yTy — 5 log W] = 5(xa = Ay) "W (x, — Ay)
1 1
=0 —log | — 5 %) Wi, — 2x) W Ay + y AT Ay
1 1
=C — 5 log |[W| — 5 [} W, — 2% W Ay + Tr [ATW Ayy ']

Taking expectations wrt ¢,,(y):

1 1
~o oVl L o T AT RG]

Note that we don’t need to know everything about ¢(y), just the moments (y) and <ny>.
These are the expected sufficient statistics.



The M step for Factor Analysis (cont.)

Fod— % W] - %Z [}V, — 2T A, + Tr [N A (], + 5]

n

Taking derivatives wrt A and W1, using aTr[AB] = AT and 81%%414\ = A"

OF . 1 T -l T
=V ;xnun—\ll A<N2+;unun =0

Note: we should actually only take derivarives w.r.t. W ;; since V is diagonal.
When 2. — 0 these become the equations for linear regression!



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

X|(9 Z?Tk LLk,AkATk+\|f)

where 7}, is the mixing proportion for FA k, u; is its centre, A; is its “factor loading matrix”,
and W is a common sensor noise model. 0 = {{m, r, N\i }i=1.. 1, V}
We can think of this model as having two sets of hidden latent variables:

e A discrete indicator variable s, € {1,... K}

e For each factor analyzer, a continous factor vector y,, ;. € R Pk

p(x]0) = Zpsn]@/ y|n, 0)p(X,]Y, $n, 0) dy

Sn:]_

As before, an EM algorithm can be derived for this model:
E step: We need moments of p(y,,, s,|x,, 8), specifically: (ds, ), (Js,—m¥n) and <5Sn:myny;>.

M step: Similar to M-step for FA with responsibility-weighted moments.

See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf



EM for exponential families
EM is often applied to models whose joint over z = (y, x) has exponential-family form:

p(2|0) = f(z)exp{0'T(2)}/Z(6)
(with Z(0) = [ f(z) exp{0'T(z)}dz) but whose marginal p(x) & ExpFam.

The free energy dependence on 6 is given by:
Fla.0)= [ aly)logply. x6)dy — Hig
= /q(y) [0'T(z) — log Z(0)]dy + const wrt ¢
= 9T<T(z)>q(y) — log Z(6) + const wrt 0

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:

o 1 0 1 0 T
o8 2(0) = 2200~ [ ria)ea(d7T(2)
— /\Z(me(z) eXp{QTT(Zﬂ;' T(z)= (T(2)|0)
p(2]6)
oF

Thus, the M step solves: (T(2)) ) — (T(2)]0) =0

00



References

e A. P. Dempster, N. M. Laird and D. B. Rubin (1977).
Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the
Royal Statistical Society. Series B (Methodological), Vol. 39, No. 1 (1977), pp. 1-38.
http://www. jstor.org/stable/2984875

e R. M. Neal and G. E. Hinton (1998).
A view of the EM algorithm that justifies incremental, sparse, and other variants.
In M. I. Jordan (editor) Learning in Graphical Models, pp. 355-368, Dordrecht: Kluwer
Academic Publishers.
http://www.cs.utoronto.ca/ "radford/ftp/emk.pdf

e Z. Ghahramani and G. E. Hinton (1996).
The EM Algorithm for Mixtures of Factor Analyzers.
University of Toronto Technical Report CRG-TR-96-1.
http://learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf



Proof of the Matrix Inversion Lemma

(A+XBX)'=AT1 - A XB 1T+ XTA'X)IxTA™!

Need to prove:
(A7 —A'XB '+ XA X) ' XTA) (A+XBX ) =1

Expand:

[+ A'XBX" —A'XB '+ X"A'X)'XT A ' X B '+ XA X)) XA XBXT
Regroup:

= [+ A X (BXT - B+ XTAX) !XT - (B + XTATIX) I X TATIXBXT)

= I+ A'X(BX' = (B'"+ X"A'X)"'B'BX" - (BT'+ XTAT'X)"'XTAT'XBX ")

= I+A'X(BX'-(B'+ XA X) (BT + X AT X)BX )
= [+ A'X(BX' —-BX") =1



Proof of the Matrix Inversion Lemma
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