Probabilistic & Unsupervised Learning

Gaussian Processes

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science
University College London

Term 1, Autumn 2012
Bayesian Linear Regression

Given observed data $D = \{X = [x_1 \ldots x_N], Y = [y_1 \ldots y_N]\}$, the posterior on w is:

$$w|D \sim \mathcal{N}\left(\frac{1}{\sigma^2} \sum_w X Y^T, \left(\frac{1}{\sigma^2} X X^T + \frac{1}{\tau^2} I\right)^{-1}\right)$$

The Bayesian predictive distribution for $y'|x'$ is obtained by integrating out w:

$$p(y'|x', D) = \int dw \ p(y'|w, x')p(w|D)$$

$$= \int dw \ \mathcal{N}(y'|w^T x', \sigma^2) \ \mathcal{N}(w|\mu_w, \Sigma_w)$$

$$= \mathcal{N}(\mu_{w^T x'}, x'|\Sigma_w x + \sigma^2).$$
Alternative View of Linear Regression

\[w \sim N(0, \tau^2 I) \]
\[y_i \sim N(w^T x_i, \sigma^2) \]

\[y \sim N(0, \tau^2 XX^T + \sigma^2 I) \]

Integrate out \(w \): the joint distribution of \(y_1, \ldots, y_N \) given \(x_1, \ldots, x_N \) is Gaussian. The means and covariances are:

\[
E[y_i] = E[w^T x_i] = 0^T x_i = 0
\]
\[
E[(y_i - \bar{y}_i)^2] = E[(x_i^T w)(w^T x_i)] + \sigma^2 = \tau^2 x_i^T x_i + \sigma^2
\]
\[
E[(y_i - \bar{y}_i)(y_j - \bar{y}_j)] = E[(x_i^T w)(w^T x_j)] = \tau^2 x_i^T x_j
\]

\[
\begin{bmatrix}
y_1 \\
y_2 \\
\vdots \\
y_N
\end{bmatrix}
\sim
\begin{bmatrix}
0 \\
0 \\
\vdots \\
0
\end{bmatrix}
, \quad
\begin{bmatrix}
\tau^2 x_1^T x_1 + \sigma^2 \\
\tau^2 x_1^T x_2 + \sigma^2 \\
\vdots \\
\tau^2 x_N^T x_N + \sigma^2
\end{bmatrix}
\]

\[Y^T | X \sim N(0_N, \tau^2 XX^T + \sigma^2 I_N) \]
Alternative View of Linear Regression

Now, include the test input vector x' and test output y':

$$
\begin{bmatrix}
Y^T \\
y'
\end{bmatrix} \mid X, x' \sim \mathcal{N} \left(\begin{bmatrix} 0_N \\ 0 \end{bmatrix}, \begin{bmatrix} \tau^2 X^T X + \sigma^2 I & \tau^2 X^T x' \\ \tau^2 x'^T X & \tau^2 x'^T x' + \sigma^2 \end{bmatrix} \right)
$$

We can find $y'|Y$ by the standard multivariate Gaussian result:

$$
\begin{bmatrix} a \\ b \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} A & C \\ C^T & B \end{bmatrix} \right) \Rightarrow b|a \sim \mathcal{N} \left(C^T A^{-1} a, B - C^T A^{-1} C \right)
$$

So

$$
y'|Y, X, x' \sim \mathcal{N} \left(\tau^2 x'^T X (\tau^2 X^T X + \sigma^2 I)^{-1} Y^T, \tau^2 x'^T x' + \sigma^2 - \tau^2 x'^T X (\tau^2 X^T X + \sigma^2 I)^{-1} \tau^2 X^T x' \right)
$$

$$
\sim \mathcal{N} \left(\frac{1}{\sigma^2} x'^T \Sigma X Y^T, x'^T \Sigma x' + \sigma^2 \right) \quad \Sigma = \left(\frac{1}{\sigma^2} X X^T + \frac{1}{\tau^2} I \right)^{-1}
$$

Same answer as when we integrated posterior over w to obtain predictive distribution over y'.

Similarly, evidence $P(Y|X)$ is just probability under Gaussian, and reduces to previous expression.

The point: Bayesian regression can be derived from a joint, parameter-free distribution on the outputs conditioned on the inputs.
Nonlinear Regression

What if we introduce a nonlinear mapping \(x \mapsto \phi(x) \)? Each element of \(\phi(x) \) is a (nonlinear) feature extracted from \(x \). May be many more features than elements on \(x \).

The regression function \(f(x) = w^T \phi(x) \) is nonlinear, but outputs \(Y \) still jointly Gaussian!

\[
Y^T | X \sim \mathcal{N}(0_N, \tau^2 \Phi^T \Phi + \sigma^2 I_N)
\]

where the \(i^{\text{th}} \) column of matrix \(\Phi \) is \(\phi(x_i) \).

Proceeding as before, the predictive distribution over \(y' \) on a test input \(x' \) is:

\[
y'|Y, X, x' \sim \mathcal{N} \left(\tau^2 \phi(x')^T \Phi K^{-1} Y^T, \tau^2 \phi(x')^T \phi(x') + \sigma^2 - \tau^4 \phi(x)^T \Phi K^{-1} \Phi^T \phi(x') \right)
\]

\[
K = \tau^2 \Phi^T \Phi + \sigma^2 I
\]
The Covariance Kernel

\[Y^T | X \sim \mathcal{N} \left(0_N, \tau^2 \Phi^T \Phi + \sigma^2 I_N \right) \]

The covariance of the output vector \(Y \) plays a central role in the development of the theory of Gaussian processes.

Define the **covariance kernel** function \(K : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R} \) such that if \(x, x' \in \mathbb{X} \) are two input vectors with corresponding outputs \(y, y' \), then

\[
K(x, x') = \text{Cov}[y, y'] = E[yy'] - E[y]E[y']
\]

In the nonlinear regression example we have \(K(x, x') = \tau^2 \phi(x)^T \phi(x') + \sigma^2 \delta_{x=x'} \).

The covariance kernel has two properties:

- **Symmetric**: \(K(x, x') = K(x', x) \) for all \(x, x' \).
- **Positive semidefinite**: the matrix \([K(x_i, x_j)]\) formed by any finite set of input vectors \(x_1, \ldots, x_N \) is positive semidefinite.

Theorem: A covariance kernel \(K : \mathbb{X} \times \mathbb{X} \rightarrow \mathbb{R} \) is symmetric and positive semidefinite if and only if there is a feature map \(\phi : \mathbb{X} \rightarrow \mathbb{H} \) such that

\[
K(x, x') = \phi(x)^T \phi(x')
\]

The feature space \(\mathbb{H} \) can potentially be infinite dimensional.
Regression using the Covariance Kernel

For non-linear regression, all operations depended on $K(x, x')$ rather than explicitly on $\phi(x)$.

So we can define the joint in terms of K \textit{implicitly} using a (potentially infinite-dimensional) feature map $\phi(x)$.

$$Y | X, K \sim \mathcal{N}(0_N, K(X, X))$$

where the i, j entry in the covariance matrix $K(X, X)$ is $K(x_i, x_j)$.

This is called the \textit{kernel trick}.

\textbf{Prediction}: compute the predictive distribution of y' conditioned on Y:

$$y' | x', X, Y, K \sim \mathcal{N}(\underbrace{K(x', X)K(X, X)^{-1}Y}_\text{mean}, \underbrace{K(x', x') - K(x', X)K(X, X)^{-1}K(X, x')}_\text{variance})$$

\textbf{Evidence}: this is just the Gaussian likelihood:

$$P(Y | X, K) = |2\pi K(X, X)|^{-\frac{1}{2}} e^{-\frac{1}{2}YK(X,X)^{-1}Y^T}$$

\textbf{Evidence optimisation}: the covariance kernel K often has parameters, and these can be optimized by gradient ascent in $\log P(Y | X, K)$.
A **Gaussian process** (GP) is a collection of random variables, any finite number of which have (consistent) Gaussian distributions.

In our regression setting, corresponding to each input vector \(x \) we have an output \(f(x) \). Given \(X = [x_1, \ldots, x_N] \), the joint distribution of the outputs \(F = [f(x_1), \ldots, f(x_N)] \) is:

\[
F \mid X, K \sim \mathcal{N}(0, K(X, X))
\]

Thus the random function \(f(x) \) (as a collection of random variables, one \(f(x) \) for each \(x \)) is a Gaussian process.

In general, a Gaussian process is parametrized by a mean function \(m(x) \) and covariance kernel \(K(x, x') \), and we write

\[
f(\cdot) \sim GP(m(\cdot), K(\cdot, \cdot))
\]

Posterior Gaussian process: on observing \(X \) and \(F \), the conditional joint distribution of \(F' = [f(x'_1), \ldots, f(x'_M)] \) on another set of input vectors \(x'_1, \ldots, x'_M \) is still Gaussian:

\[
F' \mid X', X, F, K \sim \mathcal{N}(K(X', X)K(X, X)^{-1}F^T, K(X', X') - K(X', X)K(X, X)^{-1}K(X, X'))
\]

thus the posterior over functions \(f(\cdot) \mid X, F \) is still a Gaussian process!
Regression with Gaussian Processes

We wish to model the joint distribution of outputs \(y_1, \ldots, y_N \) given inputs \(x_1, \ldots, x_N \).

Use a GP prior over functions:

\[
f(\cdot) \sim \mathcal{GP}(0, K(\cdot, \cdot))
\]

Usually, instead of treating \(y_i \) as direct observation of the function value \(f(x_i) \), we add Gaussian observation noise:

\[
y_i | x_i, f(\cdot) \sim \mathcal{N}(f(x_i), \sigma^2)
\]

Evidence: again this is just a multivariate Gaussian likelihood,

\[
P(Y|X) = |2\pi(K(X, X) + \sigma^2 I)|^{-\frac{1}{2}} e^{-\frac{1}{2}Y^T(K(X, X) + \sigma^2 I)^{-1}Y}
\]

Posterior: the posterior function is still a GP,

\[
f(\cdot)|X, Y \sim \mathcal{GP}(K(\cdot, X)(K(X, X) + \sigma^2 I)^{-1}Y^T, K(\cdot, \cdot) - K(\cdot, X)(K(X, X) + \sigma^2 I)^{-1}K(X, \cdot))
\]

Prediction: the predictive distribution is just posterior plus observation noise:

\[
y' | X, Y, x' \sim \mathcal{N}(E[f(x')|X, Y], \text{Var}[f(x')|X, Y] + \sigma^2)
\]

Evidence Optimisation: we can do this by gradient ascent in \(\log P(Y|X) \).
Samples from a Gaussian Process

We can draw sample functions from a GP by fixing a set of input vectors x_1, \ldots, x_N, and drawing a sample $f(x_1), \ldots, f(x_N)$ from the corresponding multivariate Gaussian. This can then be plotted.

Below we plot samples from an example prior and corresponding posterior GP.

Another approach is to

- sample $f(x_1)$ first,
- then $f(x_2) | f(x_1)$,
- and generally $f(x_n) | f(x_1), \ldots, f(x_{n-1})$ for $n = 1, 2, \ldots$.
Sample from a 2D Gaussian Process
Examples of covariance Kernels

- **Polynomial:**
 \[K(x, x') = (1 + x^T x')^m \]

- **Squared-exponential:**
 \[K(x, x') = \theta^2 e^{-\frac{||x-x'||^2}{2\eta^2}} \]

- **Periodic (exp-sine):**
 \[K(x, x') = \theta^2 e^{-\frac{2 \sin^2(\pi(x-x')/\tau)}{\eta^2}} \]

- **Rational Quadratic:**
 \[K(x, x') = \left(1 + \frac{||x-x'||^2}{2\alpha\eta^2}\right)^{-\alpha} \]
 \(\alpha > 0 \)
If K_1 and K_2 are covariance kernels, then so are:

- **Rescaling:** αK_1 for $\alpha > 0$.
- **Addition:** $K_1 + K_2$
- **Elementwise product:** $K_1 K_2$
- **Mapping:** $K_1(\phi(x), \phi(x'))$ for some function ϕ.

We say a covariance kernel is translation-invariant if

$$K(x, x') = h(x - x')$$

A GP with a translation-invariant covariance kernel is stationary: if $f(\cdot) \sim \mathcal{GP}(0, K)$, then so is $f(\cdot - x) \sim \mathcal{GP}(0, K)$ for each x.

We say a covariance kernel is radial if

$$K(x, x') = h(||x - x'||)$$

A GP with a radial covariance kernel is stationary with respect to translations, rotations, and reflections of the input space.
Overparameterised models can **overfit**.

But the Bayesian treatment integrates parameters out, so they cannot be adjusted to overfit the data! In the GP, the parameter is the function $f(x)$ which can be infinite-dimensional.

The Gaussian process is an example of a larger class of **nonparametric Bayesian models**.

- Infinite number of parameters.
- Often constructed as the infinite limit of a nested family of finite models (sometimes equivalent to infinite model averaging).
- Parameters integrated out, so effective number of parameters to overfit is zero or small (hyperparameters).
- No need for model selection. Bayesian posterior on parameters will concentrate on “sub-model” with largest integral automatically.
- No explicit need for Occam’s razor, validation or added regularisation penalty.
Automatic relevance determination appeared in MacKay (1993) *Bayesian Methods for Back-
propagation Networks* and Neal (1993) *Bayesian Learning for Neural Networks.*
Gaussian processes can also be used in classification and latent variable models. We will
consider classification in the second half of course.

Many of the figures have been copied from a Gaussian process tutorial by Carl Rasmussen
(MLSS 2007) at http://agbs.kyb.tuebingen.mpg.de/wikis/mlss07/CarlERasmussen

An excellent text book on Gaussian processes is *Gaussian processes for Machine Learning*
by Rasmussen and Williams, available online at http://www.gaussianprocess.org/gpml/

The original paper on Gaussian process latent variable models is by Neil Lawrence (NIPS
2004) at http://www.cs.man.ac.uk/~neill/