Topic Modelling Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss. Example topics discovered from PNAS abstracts (each topic represented in terms of the top 5

most common words in that topic).
Example: consider abstracts of papers PNAS.
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Recap: Beta Distributions Dirichlet Distributions

Recall the Bayesian coin toss example.
P(Hla) =q P(Tlg)=1-q

The probability of a sequence of coin tosses is:

Imagine a Bayesian dice throwing example.
P(1la) =g P(2la)=q P@Bla)=g P(4la)=as P(5la)=gs P(6la) =0

) with gi > 0, ", g; = 1. The probability of a sequence of dice throws is:
P(HHTT L. HT|q) _ q#headS(.I _ q)malls
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A conjugate prior for q is the Beta distribution: P(34156---12|q) = H qf e’
i=1
MNa+b) .+ b—1
P(q) = WQ (1-9) a,b=>0 A conjugate prior for g is the Dirichlet distribution:
r aj ai—
p(q):@Hqi: 1 g >0,>.q =1 a>0
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Latent Dirichlet Allocation Latent Dirichlet Allocation as Matrix Decomposition

Each document is a sequence of words, we model it using a mixture model by ignoring the

. . Let Ngw be the number of times word w appears in document d, and Pgy is the probability of
sequential nature—"bag-of-words” assumption.

word w appearing in document d.

» Draw topic distributions from a prior

. p(N|P) PN Jikelihood term
e ~ Dir(3,. ... 3) (NIP) H aw

1 » For each document: b ok 10016 K\ o(oick word wlk K )

@ » draw a distribution over topics dw = zk:p(plc topic k)p(pick word w|k) = Z ok P
04 ~ Dir(cv, ..., @)

! 1 » generate words iid:

@ @ » draw topic from a document-specific dist:
P, =0 .
LA topick = 1.k Zid ~ Discrete(od) w * ¢kW
//
» draw word from a topic-specific dist:
wordi — 1...Ny Xig ~ Discrete(¢z,)
document d = 1...D This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to

. . ) N . . non-negative matrix factorisation (NMF).
Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation Factorial Hidden Markov Models

D—@—@— -+ —@
» Exact inference in latent Dirichlet allocation is intractable, and typically either variational (2) m x @

or Markov chain Monte Carlo approximations are deployed.
> Latent Dirichlet allocation is an example of a mixed membership model from statistics.

» Latent Dirichlet allocation has also been applied to computer vision, social network @, , @, L —>?
» Generalizations

modelling, natural language processing. ..

» Relax the bag-of-words assumption (e.g. a Markov model).

> Model changes in topics through time.

> Model correlations among occurrences of topics.

» Model authors, recipients, multiple corpora. » These are hidden Markov models with many state variables (i.e. a distributed
» Cross modal interactions (images and tags). representation of the state).

>

Nonparametric generalisations. » Each state variable evolves independently.

» The state can capture many more bits of information about the sequence (linear in the
number of state variables).

» E step is usally intractable (due to explaining away in latent states).



Dynamic Bayesian Networks Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionaliy reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear
manifold:

» Nonlinear autoencoders

» Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
» Multi-dimensional scaling (MDS)

» Kernel PCA (based on MDS representation)

> Isomap
> Locally linear embedding (LLE)

» Stochastic Neighbour Embedding
> Like factorial HMMs but with structured dependencies among latent states. » Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products Another view of PCA: matching inner products

Consider the eigendecomposition of G:

J— T ..
We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We G=UAU arangedso A1 > 2 An >0

obtain similar results if we approximate the Gram matrix:

The best rank-k approximation G ~ Y'Y is given by:

minimise &£ = Z(G,-,- —viy) [ Viu] —— ]
ij A /)\2 u; .
fOI’yE Rk. . e yi Yo Ym
Y = [U]1:m,1:k[/\ ]1:k,1:k; .
= [UA1/2]1: 1k
" — VWU —————
That is, look for a k-dimensional embedding in which dot products (which depend on lengths, Yy — [/\1/2 UT]H( m
and angles) are preserved as well as possible. '
We will see that this is also equivalent to preserving distances between points. T
L \% )\m Un -

The same operations can be performed on the kernel Gram matrix = Kernel PCA.



Multidimensional Scaling Metric MDS

Assume the dissimilarities represent Euclidean distances between points in some high-D
) ) o space.
Suppose all we were given were distances or symmetric “dissimilarities” Aj.
0 A A Ay Ay = Il = x| with Xi:xi =0
Ay 0 A A

A= :
Ais Ao 0 As We have:
Au By Bu 0 AF = [Ixil|* + [Ix]|* — 2xi - )
> A% = mlxil+ 3 el — 0
k k
2 _ 2 e _
Goal: Find vectors y; such that |ly; — y;|| = Aj. ;Akj o ; IPxill” + mlx " — 0
> Ah=2m) |
ki k
This is called Multidimensional Scaling (MDS). 1 (1 1
= Gj=X-X =3 EXK:(AﬁA-AIzq)— E;AZ—A;
Metric MDS and eigenvalues Interpreting MDS
We will actually minimize the error in the dot products:
5:Z(Gi/_yi'yj)2 1(1 A2 2 2 1 1,0
=— [ =(A*1 +1A%) — A’ — —1"A%1
i G 2 m( * ) m?
As in PCA, this is given by the top slice of the eigenvector matrix. G = UNU"; Yy — [/\1/2 UT]1;k -
[ vV ul ) (1 is a matrix of ones.)
VO UZ
yi ¥e Ym

» Eigenvectors. Ordered, scaled and truncated to yield low-dimensional embedded

oL points y;.
» Eigenvalues. Measure how much each dimension contributes to dot products.

» Estimated dimensionality. Number of significant (nonnegative — negative possible if
Aj are not metric) eigenvalues.

L \//\mu;v i




MDS and PCA

Dual matrices:

S=—xx" scatter matrix (n % n)

m
G=X"X Gram matrix (m x m)

» Same eigenvalues up to a constant factor.
» Equivalent on metric data, but MDS can run on non-metric dissimilarities.
» Computational cost is different.

> PCA: O((m + k)r?)

» MDS: O((n + k)m?)

But

Rank ordering of Euclidean distances is
NOT preserved in “manifold learning”.

d(A,C) <d(A,B) d(A,C) > d(A,B)

Non-metric MDS

MDS can be generalised to permit a monotonic mapping:
Aj — g(Ay),

even if this violates metric rules (like the triangle inequality).

This can introduce a non-linear warping of the manifold.

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed)
Euclidean distances in MDS.

> preserves local structure
> estimates “global” structure
» preserves information (MDS)



Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to be local on the
manifold). Euclidean distances are preserved within a neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping between points
within neighbourhoods.

3. Embed using MDS.

Step 2: Geodesics

Estimate distances by shortest path in graph.

Ay = min_.‘{ M é,l

path(x;,

» Standard graph problem. Solved by Dijkstra’s algorithm (and others).
> Better estimates for denser sampling.
> Short cuts very dangerous (“average” path distance?) .

Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
» vertices represent input points
» undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
» Graph is singly-connected.
» Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r,
prior knowledge.

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)

» Eigenvectors of Gram matrix yield low-dimensional embedding.

» Number of significant eigenvalues estimates dimensionality.




Isomap example 1
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Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA

preserves local and global structure.

Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

» preserves local structure (not just distance)
> not explicitly global
> preserves only local information

Isomap example 2

Bottom loop articulation

Top arch articulation

-

Stages of LLE

Reconstruct with
linear weights




Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap
graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:
» Graph is singly-connected — although will “work” if not.
» Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r,
prior knowledge.

Step 3: Embed

Minimise reconstruction errors in y-space under the same weights:

¢(Y) = Z yi - Z \{Z‘ Rmnstruﬁwl?
; jGNe(i) linear weights

subject to:

We can re-write the cost function in quadratic form:
(Y) =D W[YTY]with W = (1 — W)T(1 — W)
i

Minimise by setting Y to equal the bottom 2. .. k + 1 eigenvectors of W. (Bottom eigenvector
always 1 — discard due to centering constraint)

Step 2: Local weights

Estimate local weights to minimize error

o(w)=>"

i

x— 3

JENe(i)

DoWi=1 » o0 °

JENe(/)

> Linear regression — under- or over-constrained depending on |Ne(/)].
» Local structure — optimal weights are invariant to rotation, translation and scaling.
» Short cuts less dangerous (one in many).

LLE example 1

Surfaces
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inputs
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d=2
dimensions




LLE example 2
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LLE and Isomap

Many similarities
» Graph-based, spectral methods
» No local optima

Essential differences
» LLE does not estimate dimensionality

> |somap can be shown to be consistent; no theoretical guarantees for LLE.

» LLE diagonalises a sparse matrix — more efficient than isomap.
» Local weights vs. local & global distances.

LLE example 3
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Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

BEFORE

AFTER
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Maximum Variance Unfolding
Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {y;} C R" (points in high-D space) with maximum variance, preserving local
distances. Let Kj = y]y;. Then:

Maximise Tr [K] subject to:
> Ki=0 (centered)
K>=0 (positive definite)
Ki — 2Kj + Kj = ||x; — ;|| for j € Ne(i)  (locally metric)
lyi—yjlI2

This is a semi-definite program: convex optimisation with unique solution.
3. Embed y; in R using linear methods (PCA/MDS).

SNE variants

» Symmetrise probabilities (p; = pji)
o 3 Ixi—xl?/o®
- Zk#/ e—%l\xr—xk”z/az

pi forj # i

» Gaussian Process Latent Variable Models. Lawrence. Advances in Neural Information

Processing Systems, 2004.
Define g; analagously, optimise joint KL.

» Heavy-tailed embedding distributions allow embedding to lower dimensions than true

manifold: .
g = (1 + 1y —wll*)
o1+ [lye —wil[2)

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Stochastic Neighbour Embedding
Softer “probabilistic” notions of neighbourhood and consistency.

High-D “transition” probabilities:
SlIxi—x;12/o®

e 2

1 2 2

— 3 lIxi—x¢[[? /o
DI

i = forj # i, pii =0

Find {y;} C R* to:
e~ 2 vi—jI?

. Pijji .
minimise E pjjilog — with g = ———-
7 qgjli Zk?ﬁe 3 lyi—=y«ll

Nonconvex optimisation is initialisation dependent.

Scale o plays a similar role to neighbourhood definition:
» Fixed o: resembles a fixed-radius ball.

» Choose o; to maintain consistent entropy in p;; of log, k: similar to k-nearest
neighbours.

Gaussian Process Latent Variable Models

Recap: probabilistic PCA

yilxi, A ~ N (Ax;, 87'1)
X ~ ./\/‘(07 /)

Usually: compute posterior over X = [X1,...,Xy] ", maximizing likelihood over A.

Suppose we know the values of the latent X, then we can integrate out A (c.f. linear
regression), giving a conditional probability of ¥ = [y ...yn]":

A~ N(0,a" ")

p(Y|X) ~ [27K| " ? exp (—%Tr[K*‘ YYT]> K=aXx' + 4l

This is just D independent Gaussian processes, one for each dimension of Y! Each
Gaussian process describes a mapping from latent space x to one dimension of y.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on X is complicated—instead of computing a posterior over X we can

only find point values that maximise the likelihood (jointly with the hyperparameters).



Gaussian Process Latent Variable Models
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Approximate Inference

> Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear
approximations are particularly useful since Gaussian distributions are closed under
linear transformations (e.g., EKF). Also Laplace’s approximation.

» Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by
a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

> Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form g(H), such that KL[q/|p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of g(H).

» Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form g(H) or with a set of locally consistent tractable forms by other means
(loopy belief propagation, expectation propagation).

» Recognition Models: Approximate the hidden variable posterior distribution using an
explicit boftom-up recognition model/network.

Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for three (main) reasons:

» Distributions may have complicated forms (e.g. non-linearities in generative model).

» “Explaining away” causes coupling from observations
Observing the value of a child induces dependencies amongst its parents.

O

» Even with simple models, being Bayesian and computing the full posterior over both
latent variables and parameters
There is often strong coupling between latent variables and parameters.

We can still work with such models by using approximate inference techniques to estimate
the latent variables.

References

» Pattern Classification. Duda, Hart and Stork. Wiley, 2000.

> A Unifying Review of Linear Gaussian Models. Roweis and Ghaharamani. Neural
Computation, 1999.

» Independent Component Analysis. Hyvarinen, Karhunan and Oja. John Wiley and Sons,
2001.

» Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for
Natural Images. Olshausen & Field Nature, 1996.

> A Learning Algorithm for Boltzmann Machines. Ackley, Hinton and Sejnowski. Cognitive
Science, 1985.

» Connectionist Learning of Belief Networks. Neal. Artificial Intelligence, 1992.

» Latent Dirichlet Allocation. Blei, Ng and Jordan. Journal of Machine Learning Research,
2003.

» Factorial Hidden Markov Models. Ghahramani and Jordan. Machine Learning, 1997.

» Dynamic Bayesian Networks: Representation, Inference and Learning. Kevin Murphy.
PhD Thesis, 2002.



References

» Isomap. Tenenbaum, de Silva & Langford, Science, 290(5500):2319-23 (2000).

» LLE. Roweis & Saul, Science, 290(5500):2323—-6 (2000).

» Laplacian Eigenmaps. Belkin & Niyogi, Neural Comput 23(6):1373-96 (2003).

» Hessian LLE. Donoho & Grimes, PNAS 100(10): 5591-6 (2003).

» Maximum variance unfolding. Weinberger & Saul, Int J Comput Vis 70(1):77-90 (2006).
» Conformal eigenmaps. Sha & Saul ICML 22:785-92 (2005).

» SNE Hinton & Roweis, NIPS, 2002; t-SNE van der Maaten & Hinton, JMLR,
9:2579-2605, 2008.

» Gaussian Process Latent Variable Models Lawrence. Advances in Neural Information
Processing Systems, 2004.

More at: http://www.gatsby.ucl.ac.uk/~maneesh/dimred/
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