
Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.

Global climate change and mammalian species diversity in U.S. national parks
National parks and bioreserves are key conservation tools used to protect species and their
habitats within the confines of fixed political boundaries. This inflexibility may be their
”Achilles’ heel” as conservation tools in the face of emerging global-scale environmental
problems such as climate change. Global climate change, brought about by rising levels of
greenhouse gases, threatens to alter the geographic distribution of many habitats and their
component species....

The influence of large-scale wind power on global climate
Large-scale use of wind power can alter local and global climate by extracting kinetic energy
and altering turbulent transport in the atmospheric boundary layer. We report climate-model
simulations that address the possible climatic impacts of wind power at regional to global
scales by using two general circulation models and several parameterizations of the
interaction of wind turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers
The relation between changes in modern glaciers, not including the ice sheets of Greenland
and Antarctica, and their climatic environment is investigated to shed light on paleoglacier
evidence of past climate change and for projecting the effects of future climate warming on
cold regions of the world. Loss of glacier volume has been more or less continuous since the
19th century, but it is not a simple adjustment to the end of an ”anomalous” Little Ice Age....

Topic Modelling

Example topics discovered from PNAS abstracts (each topic represented in terms of the top 5
most common words in that topic).

Recap: Beta Distributions
Recall the Bayesian coin toss example.

P(H|q) = q P(T |q) = 1− q

The probability of a sequence of coin tosses is:

P(HHTT · · ·HT |q) = q#heads(1− q)#tails

A conjugate prior for q is the Beta distribution:

P(q) =
Γ(a + b)

Γ(a)Γ(b)
qa−1(1− q)b−1 a, b ≥ 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

q

P
(q

)

Dirichlet Distributions

Imagine a Bayesian dice throwing example.

P(1|q) = q1 P(2|q) = q2 P(3|q) = q3 P(4|q) = q4 P(5|q) = q5 P(6|q) = q6

with qi ≥ 0,
P

i qi = 1. The probability of a sequence of dice throws is:

P(34156 · · · 12|q) =
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A conjugate prior for q is the Dirichlet distribution:
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Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i = 1...Nd

θd

α

document d = 1...D

φk

topic k = 1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:
I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd )

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid )

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation as Matrix Decomposition

Let Ndw be the number of times word w appears in document d , and Pdw is the probability of
word w appearing in document d .

p(N|P) =
Y
dw

PNdw
dw likelihood term

Pdw =
X

k

p(pick topic k)p(pick word w |k) =
KX

k=1

θdkφkw

Pdw = θdk · φkw

This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to
non-negative matrix factorisation (NMF).

Latent Dirichlet Allocation

I Exact inference in latent Dirichlet allocation is intractable, and typically either variational
or Markov chain Monte Carlo approximations are deployed.

I Latent Dirichlet allocation is an example of a mixed membership model from statistics.
I Latent Dirichlet allocation has also been applied to computer vision, social network

modelling, natural language processing. . .
I Generalizations:

I Relax the bag-of-words assumption (e.g. a Markov model).
I Model changes in topics through time.
I Model correlations among occurrences of topics.
I Model authors, recipients, multiple corpora.
I Cross modal interactions (images and tags).
I Nonparametric generalisations.

Factorial Hidden Markov Models
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I These are hidden Markov models with many state variables (i.e. a distributed
representation of the state).

I Each state variable evolves independently.
I The state can capture many more bits of information about the sequence (linear in the

number of state variables).
I E step is usally intractable (due to explaining away in latent states).



Dynamic Bayesian Networks
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I Like factorial HMMs but with structured dependencies among latent states.

Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionaliy reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear
manifold:

I Nonlinear autoencoders
I Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
I Multi-dimensional scaling (MDS)
I Kernel PCA (based on MDS representation)
I Isomap
I Locally linear embedding (LLE)
I Stochastic Neighbour Embedding
I Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products

We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We
obtain similar results if we approximate the Gram matrix:

minimise E =
X

ij

(Gij − yi · yj )
2

for y ∈ Rk .

That is, look for a k -dimensional embedding in which dot products (which depend on lengths,
and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between points.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Y TY is given by:

Y T = [U]1:m,1:k [Λ1/2]1:k,1:k ;

= [UΛ1/2]1:m,1:k

Y = [Λ1/2UT]1:k,1:m
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The same operations can be performed on the kernel Gram matrix⇒ Kernel PCA.



Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities” ∆ij .

∆ =

2664
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3775

Goal: Find vectors yi such that ‖yi − yj‖ ≈ ∆ij .

This is called Multidimensional Scaling (MDS).

Metric MDS

Assume the dissimilarities represent Euclidean distances between points in some high-D
space.

∆ij = ‖xi − xj‖ with
X

i

xi = 0.

We have:
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Metric MDS and eigenvalues

We will actually minimize the error in the dot products:

E =
X

ij

(Gij − yi · yj )
2

As in PCA, this is given by the top slice of the eigenvector matrix.2666666666666666664
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Interpreting MDS

G =
1
2

„
1
m

(∆21 + 1∆2)−∆2 − 1
m2

1T∆21
«

G = UΛUT; Y = [Λ1/2UT]1:k,1:m

(1 is a matrix of ones.)

I Eigenvectors. Ordered, scaled and truncated to yield low-dimensional embedded
points yi .

I Eigenvalues. Measure how much each dimension contributes to dot products.
I Estimated dimensionality. Number of significant (nonnegative – negative possible if

∆ij are not metric) eigenvalues.



MDS and PCA

Dual matrices:

S =
1
m

XX T scatter matrix (n × n)

G = X TX Gram matrix (m ×m)

I Same eigenvalues up to a constant factor.
I Equivalent on metric data, but MDS can run on non-metric dissimilarities.
I Computational cost is different.

I PCA: O((m + k)n2)
I MDS: O((n + k)m2)

Non-metric MDS

MDS can be generalised to permit a monotonic mapping:

∆ij → g(∆ij ),

even if this violates metric rules (like the triangle inequality).

This can introduce a non-linear warping of the manifold.

But

Rank ordering of Euclidean distances is

NOT preserved in “manifold learning”.

B

A

C

ABC

d(A,C) < d(A,B) d(A,C) > d(A,B)

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed)
Euclidean distances in MDS.

I preserves local structure
I estimates “global” structure
I preserves information (MDS)



Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to be local on the
manifold). Euclidean distances are preserved within a neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping between points
within neighbourhoods.

3. Embed using MDS.

Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
I vertices represent input points
I undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected.
I Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Geodesics

Estimate distances by shortest path in graph.

∆ij = min
path(xi ,xj )

( X
ei∈path(xi ,xj )

δi

)

I Standard graph problem. Solved by Dijkstra’s algorithm (and others).
I Better estimates for denser sampling.
I Short cuts very dangerous (“average” path distance?) .

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)

I Eigenvectors of Gram matrix yield low-dimensional embedding.
I Number of significant eigenvalues estimates dimensionality.



Isomap example 1 Isomap example 2

Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA
preserves local and global structure.
Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

I preserves local structure (not just distance)
I not explicitly global
I preserves only local information

Stages of LLE



Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap
graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected — although will “work” if not.
I Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Local weights

Estimate local weights to minimize error

Φ(W ) =
X

i

‚‚‚‚‚xi −
X

j∈Ne(i)

Wij xj

‚‚‚‚‚
2

X
j∈Ne(i)

Wij = 1

I Linear regression – under- or over-constrained depending on |Ne(i)|.
I Local structure – optimal weights are invariant to rotation, translation and scaling.
I Short cuts less dangerous (one in many).

Step 3: Embed

Minimise reconstruction errors in y-space under the same weights:

ψ(Y ) =
X

i

‚‚‚‚‚yi −
X

j∈Ne(i)

Wij yj

‚‚‚‚‚
2

subject to: X
i

yi = 0;
X

i

yi y
T
i = mI

We can re-write the cost function in quadratic form:

ψ(Y ) =
X

ij

Ψij [Y
TY ]ij with Ψ = (I −W )T(I −W )

Minimise by setting Y to equal the bottom 2 . . . k + 1 eigenvectors of Ψ. (Bottom eigenvector
always 1 – discard due to centering constraint)

LLE example 1

Surfaces

N=1000
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k=8
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dimensions



LLE example 2 LLE example 3

LLE and Isomap

Many similarities
I Graph-based, spectral methods
I No local optima

Essential differences
I LLE does not estimate dimensionality
I Isomap can be shown to be consistent; no theoretical guarantees for LLE.
I LLE diagonalises a sparse matrix – more efficient than isomap.
I Local weights vs. local & global distances.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.



Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {yi} ⊂ Rn (points in high-D space) with maximum variance, preserving local
distances. Let Kij = yT

i yj . Then:

Maximise Tr [K ] subject to:P
ij Kij = 0 (centered)

K � 0 (positive definite)

Kii − 2Kij + Kjj| {z }
‖yi−yj‖2

= ‖xi − xj‖2 for j ∈ Ne(i) (locally metric)

This is a semi-definite program: convex optimisation with unique solution.

3. Embed yi in Rk using linear methods (PCA/MDS).

Stochastic Neighbour Embedding

Softer “probabilistic” notions of neighbourhood and consistency.

High-D “transition” probabilities:

pj|i =
e−

1
2 ‖xi−xj‖2/σ2P

k 6=i e−
1
2 ‖xi−xk‖2/σ2

for j 6= i, pi|i = 0

Find {yi} ⊂ Rk to:

minimise
X

ij

pj|i log
pj|i

qj|i
with qj|i =

e−
1
2 ‖yi−yj‖2P

k 6=i e−
1
2 ‖yi−yk‖2

.

Nonconvex optimisation is initialisation dependent.

Scale σ plays a similar role to neighbourhood definition:
I Fixed σ: resembles a fixed-radius ball.
I Choose σi to maintain consistent entropy in pj|i of log2 k : similar to k -nearest

neighbours.

SNE variants

I Symmetrise probabilities (pij = pji )

pij =
e−

1
2 ‖xi−xj‖2/σ2P

k 6=l e−
1
2 ‖xl−xk‖2/σ2

for j 6= i

I Gaussian Process Latent Variable Models. Lawrence. Advances in Neural Information
Processing Systems, 2004.
Define qij analagously, optimise joint KL.

I Heavy-tailed embedding distributions allow embedding to lower dimensions than true
manifold:

qij =
(1 + ‖yi − yj‖2)−1P
k 6=l (1 + ‖yk − yl‖2)−1

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Gaussian Process Latent Variable Models

Recap: probabilistic PCA

yi |xi ,Λ ∼ N (Λxi , β
−1I)

xi ∼ N (0, I)

Usually: compute posterior over X = [x1, . . . , xN ]>, maximizing likelihood over Λ.

Suppose we know the values of the latent X , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of Y = [y1 . . . yN ]>:

Λ ∼ N (0, α−1I)

p(Y |X) ∼ |2πK |−
D
2 exp

„
−1

2
Tr[K−1YY>]

«
K = αXX> + βI

This is just D independent Gaussian processes, one for each dimension of Y ! Each
Gaussian process describes a mapping from latent space x to one dimension of y.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on X is complicated—instead of computing a posterior over X we can
only find point values that maximise the likelihood (jointly with the hyperparameters).



Gaussian Process Latent Variable Models Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for three (main) reasons:

I Distributions may have complicated forms (e.g. non-linearities in generative model).
I “Explaining away” causes coupling from observations

Observing the value of a child induces dependencies amongst its parents.

x1

y1 y2 yK•••

I Even with simple models, being Bayesian and computing the full posterior over both
latent variables and parameters
There is often strong coupling between latent variables and parameters.

We can still work with such models by using approximate inference techniques to estimate
the latent variables.

Approximate Inference

I Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear
approximations are particularly useful since Gaussian distributions are closed under
linear transformations (e.g., EKF). Also Laplace’s approximation.

I Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by
a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

I Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q‖p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of q(H).

I Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form q(H) or with a set of locally consistent tractable forms by other means
(loopy belief propagation, expectation propagation).

I Recognition Models: Approximate the hidden variable posterior distribution using an
explicit bottom-up recognition model/network.
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