
Assignment 2 – Bonus Question

Unsupervised & Probabilistic Learning

Maneesh Sahani

Due: Monday Nov 18, 2013

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS department.
Assignments are due at the beginning of the lecture or tutorial on the due date. Late assignments (included
those handed in later on the due day) will be penalised. If you are unable to attend, you may hand in your
assignment to either lecturer or TA prior to the due time, or to Barry Fong in the Alexandra House 4th
floor reception. Do not leave them with anyone else.

Please attempt the main coursework assignments before this bonus one.

1. [60 points] LGSSMs, EM and SSID.

Download the datafiles ssm_spins.txt and ssm_spins_test.txt. Both have been generated by an
LGSSM:

yt ∼ N (Ayt−1, Q) [t = 2 . . . T ] y1 ∼ N (0, I)
xt ∼ N (Cyt, R) [t = 1 . . . T ]

using the parameters:
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but different random seeds. We shall use the first as a training data set and the second as a test set.

(a) Run the function ssm_kalman.m we have provided (or a re-implmentation in your favourite lan-
guage if you prefer) on the training data. Warning: the function expects data vectors in columns;
you will need to transpose the loaded matrices!
Make the following plots:

logdet = @(A)(2*sum(log(diag(chol(A)))));
[Y,V,~,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’filt’);
plot(Y’):
plot(cellfun(logdet,V));

[Y,V,Vj,L] = ssm_kalman(X’,Y0,Q0,A,Q,C,R, ’smooth’);
plot(Y’):
plot(cellfun(logdet,V));

Explain the behaviour of Y and V in both cases (and the differences between them).
[5 points]

(b) Write a function to learn the parameters A, Q, C and R using EM (we will assume that the
distribution on the first state is known a priori). The M-step update equations for A and C were



derived in lecture. You should show that the updates for R and Q can be written:
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where Cnew and Anew are as in the lecture notes. Store the log-likelihood at every step (easy to
compute from the fourth value returned by ssm_kalman) and check that it increases.
[Hint: the matlab code

cellsum=@(C)(sum(cat(3,C{:}),3))
defines an inline function cellsum() that sums the entries of a cell array of matrices.]
Run at least 50 iterations of EM starting from a number of different initial conditions: (1) the
generating parameters above (why does EM not terminate immediately?) and (2) 10 random
choices.
Show how the likelihood increases over the EM iterations (hand in a plot showing likelihood vs
iteration for each run, plotted in the same set of axes). Explain the features of this plot that you
think are salient.
[If your code and/or computer is fast enough, try running more EM iterations. What happens?]
[25 points]

(c) Write a function to learn A, Q, C and R using Ho-Kalman SSID. You should provide options
to specify the maximum lag to include in the future-past Hankel matrix (H), and the latent
dimensionality. You may like to plot the singular value spectrum of H to see how good a clue it
provides to dimensionality.
[Hints: if M is a cell array of the lagged correlation matrices Mτ , you can build the Hankel matrix
using:

H = cell2mat(M(hankel([1:maxlag], [maxlag:2*maxlag-1])));

The matrices Ξ (Xi) and Υ (Ups) are found using SVD (assuming K latent dimensions):

[Xi,SV,Ups] = svds(H, K);

Xi = Xi*sqrt(SV);
Ups = sqrt(SV)*Ups’;

and these can be used to find Ĉ and Â and Π̂ by regression ( / or \ in MATLAB), e.g.:

Ahat = Xi(1:end-DD,:)\Xi(DD+1:end,:);

(The code for C and Π will take a little more thought!).
To find Q̂ ad R̂ recall that, as Π is the stationary (prior) latent covariance:

AΠAT + Q = Π

and
CΠCT + R = Et→∞
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Run your code on the training data using a maximum lag of 10 and the true latent dimensionality.
Evaluate the likelihood of this model using ssm_kalman.m and show it on the likelihood figure.
Now use the SSID parameters as initial values for EM and show the resulting likelihood curve.
Comment on the advantages and disadvantanges of SSID as compared to EM.
(If you have time and inclination, you might like to explore how your results vary with different
choices of lag and dimensionality)
[25 points]



(d) Evaluate the likelihood of the test data under the true parameters, and all of the parameters found
above (EM initialised at the true parameters, random parameters and the SSID parameters, as
well as the SSID parameters without EM). Show these numbers on or next to the training data
likelihoods plotted above. Comment on the results.
[5 points]


