
Assignment 6

Probabilistic and Unsupervised Learning

Maneesh Sahani

Due: 5pm Monday January 13, 2014

Note: all assignments for this course are to be handed in to the Gatsby Unit, not to the CS de-
partment. Please hand your completed assignment to Barry Fong in the Alexandra House 4th floor
reception, or to an instuctor to TA. Do not leave them with anyone else.

Please attempt the first questions before the bonus ones. This is a programming assignment and might
require more time to understand the accompanying code and to debug, so please START EARLY.

1. [35 points] Deriving Gibbs Sampling for LDA.

In this question we derive two Gibbs sampling algorithms for latent Dirichlet allocation (LDA).
Recall that LDA is a topic model—multiple mixture models with shared components—with the
following conditional probabilities:

θd|α ∼ Dirichlet(α, . . . , α) (1)
φk|β ∼ Dirichlet(β, . . . , β) (2)
zid|θd ∼ Discrete(θd) (3)

xid|zid,φzid
∼ Discrete(φzid

) (4)
(5)

Assume that our data comprises D documents with a vocabulary of size W , and that we choose
to use a model with K topics. Let Adk =

∑
i δ(zid = k) be the number of zid variables taking on

value k in document d, and Bkw =
∑

d

∑
i δ(xid = w)δ(zid = k) be the number of times word w

is assigned to topic k. Let Nd be the total number of words in document d and let Mk =
∑

w Bkw

be the total number of words assigned to topic k.

(a) Write down the joint probability over the observed data and latent variables, expressing
the joint probability in terms of the counts Nd, Mk, Adk, and Bkw. [5 points]

(b) Derive the Gibbs sampling updates for all the latent variables {zid} and parameters θd and
φk. [10 points]

(c) Integrate out the parameters θd’s and φk’s from the joint probability in (a), resulting in
a joint probability over only the zid topic assignment variables and xid observed variables.
Again this expression should relate to zid’s and xid’s only through the counts Nd, Mk, Adk,
and Bkw. [5 points]

(d) Derive the Gibbs sampling updates for zid with all parameters integrated out. This is
called collapsed Gibbs sampling. You will need the the following identity of the Gamma
function: Γ(1 + x) = xΓ(x) for x > 0. [10 points]

(e) What hyperpriors would you give to α and β. Propose and derive a sampling update for α
and β? [5 points]



2. [65 points] Decrypting Messages with MCMC. You are given a passage of English text
that has been encrypted by remapping each symbol to a (usually) different one. For example,

a → s

b → !
〈space〉 → v

... ... ...

Thus a text like ‘a boy...’ might be encrypted by ‘sv!op...’. Assume that the mapping between
symbols is one-to-one. The file symbols.txt gives the list of symbols, one per line (note second
line is 〈space〉). The file message.txt gives the encrypted message.

Decoding the message by brute force is impossible, since there are 53 symbols and thus 53!
possible permutations to try. Instead we will set up a Metropolis-Hastings Markov chain to find
modes in the space of permutations.

We model English text, say s1s2 · · · sn where si are symbols, as a Markov chain, where each
symbol given the immediately previous one is independent of all earlier symbols:

p(s1s2 · · · sn) = p(s1)
n∏

i=2

p(si|si−1)

(a) Learn the transition statistics of the English language. In particular, download a large
text, say War and Peace (in translation!), from the web and estimate symbol probabilities
p(s) = φ(s) and transition probabilities p(s|t) = ψ(s, t). You may ignore the initial symbol
probabilities in the following.
Give formulas for the ML estimate of these probabilities as functions of the counts of
numbers of occurrences of symbols and pairs of symbols.
Compute and report athese estimated probabilities in a table. [6 marks]

(b) The state variable for our MCMC sampler will be the permutation amongst the symbols.
Let σ(s) be the symbol that stands for symbol s in the encrypted text, e.g. σ(a) = s and
σ(b) =! above. Assume a uniform prior distribution over permutations.
Are the latent variables σ(s) for different symbols s independent?
Let e1e2 · · · en be an encrypted English text. Write down the joint probability of e1e2 · · · en
and s1s2 · · · sn given σ. [6 marks]

(c) We shall use a Metropolis-Hastings (MH) sampler, with a proposal formed by choosing two
symbols s and s′ at random and swapping the corresponding encrypted symbols σ(s) and
σ(s′).
What is the probability of a given proposal, and what is the corresponding acceptance
probability? [10 marks]

(d) Implement the MH sampler, and run it on the included encrypted text. Report the current
decryption of the first 60 symbols after every 100 iterations. Your Markov chain should
hopefully converge to give you a fairly sensible message. (Hint: it may help to initialize
your chain intelligently and to try multiple times; if any case, please describe what you
did). [30 marks]

(e) Note that some ψ(s, t) values may be zero. Does this affect the ergodicity of the chain? If
the chain remains ergodic, give a proof; if not, explain and describe how you can restore
ergodicity. [5 marks]

(f) Analyse this approach to decoding. For instance, would symbol probabilities alone (rather
than pairwise stats) be sufficient? If we used a second order Markov chain for English
text, what problems might we encounter? Will it work if the encryption scheme allows
two symbols to be mapped to the same encrypted value? Would it work for Chinese with
> 10000 symbols? [8 marks]



3. [Bonus 60 points] Implementing Gibbs sampling for LDA. Take a look at the ac-
companying code, which sets up a framework in which you will implement both the standard and
collapsed Gibbs sampling inference for LDA. Read the README which lays out the MATLAB
variables used.

(a) Implement both standard and collapsed Gibbs sampline updates, and the log joint prob-
abilities in question 1(a), 1(c) above. The files you need to edit are stdgibbs logjoint,
stdgibbs update, colgibbs logjoint,colgibbs update. Debug your code by running toyexam-
ple. Show sample plots produced by toyexample, and attach and document the MATLAB
code that you wrote. [20 points]

(b) Based upon the plots of log predictive and joint probabilities produced by toyexample, how
many iterations do you think are required for burn-in? Discarding the burn-in iterations,
compute and plot the autocorrelations of the log predictive and joint probabilities for both
Gibbs samplers. You will need to run toyexample for a larger number of iterations to reduce
the noise in the autocorrelation. Based upon the autocorrelations how many samples do
you think will be need to have a representative set of samples from the posterior? Describe
what you did and justify your answers with one or two sentences. [10 points]

(c) Based on the computed autocorrelations, which of the two Gibbs samplers do you think
converge faster, or do they converge at about the same rate? If they differ, why do you
think this might be the case? Justify your answers. [5 points]

(d) Try varying α, β and K. What effects do these have on the posterior and predictive
performance of the model? Justify your answers. [5 points]
Topic modelling of NIPS papers. Now that we have code for LDA, we can try our
hands on finding the topics at a major machine learning conference (NIPS). In the provided
code there is a file nips.data which contains preprocessed data. The vocabulary is given in
nips.vocab.

(e) The data in nips.data is probably too big so that our MATLAB implementation will be too
slow. We will try to reduce the data set to a more tractable size, by removing words from the
vocabulary. Come up with a metric for how informative/relevant/topical a vocabulary word
is. You may want to experiment and try multiple metrics, and make sure that keywords
like “Bayesian”, “graphical”, “Gaussian”, “support”, “vector”, “kernel”, “representation”,
“regression”, “classification” etc have high metric. Report on your experiences, and use
your metric to prune the data set to just the top few hundred words (say 500, or lower
if the implementation is still too slow). You may find it useful to read up on tf-idf on
wikipedia. [10 points]

(f) Now run LDA on the reduced NIPS data, using one of the Gibbs samplers you have just
written. You will need to experiment with various settings of α, β and K until the topics
discovered looks “reasonable”. Describe the topics you found. How do the topics change
(qualitatively) as α, β and K are varied? [10 points]


