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Sampling

For inference and learning we need to compute both:
I Posterior distributions (on latents and/or parameters) or predictive distributions.
I Expectations with respect to these distributions.

Both are often intractable.

Deterministic approximations on distributions (factored variational / mean-field; BP; EP) or
expectations (Bethe / Kikuchi methods) provide tractability, at the expense of a fixed
approximation penalty.

An alternative is to represent distributions and compute expectations using randomly
generated samples.

Results are consistent, often unbiased, and precision can generally be improved to an
arbitrary degree by increasing the number of samples.
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Intractabilities and approximations

I Inference – computational intractability
I Factored variational approx
I Loopy BP/EP/Power EP
I LP relaxations/ convexified BP
I Gibbs sampling, other MCMC

I Inference – analytic intractability
I Laplace approximation (global)
I Parametric variational approx (for special cases).
I Message approximations (linearised, sigma-point, Laplace)
I Assumed-density methods and Expectation-Propagation
I (Sequential) Monte-Carlo methods

I Learning – intractable partition function
I Sampling parameters
I Constrastive divergence
I Score-matching

I Model selection
I Laplace approximation / BIC
I Variational Bayes
I (Annealed) importance sampling
I Reversible jump MCMC

Not a complete list!



The integration problem

We commonly need to compute expected value integrals of the form:Z
F(x) p(x)dx ,

where F(x) is some function of a random variable X which has probability density p(x).

0

0

0

0

Three typical difficulties:
left panel: full line is some complicated function, dashed is density;
right panel: full line is some function and dashed is complicated density;
not shown: non-analytic integral (or sum) in very many dimensions



Simple Monte-Carlo Integration

Evaluate:
Z

dx F(x)p(x)

Idea: Draw samples from p(x), evaluate F(x), average the values.

Z
F(x)p(x)dx ' 1

T

TX
t=1

F(x (t)),

where x (t) are (independent) samples drawn from p(x).

Convergence to integral follows from strong law of large numbers.



Analysis of simple Monte-Carlo

Attractions:
I unbiased:

E

"
1
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TX
t=1

F(x (t))

#
= E [F(x)]

I variance falls as 1/T independent of dimension:
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`
E
ˆ
F(x)2˜− E [F(x)]2´

Problems:
I May be difficult or impossible to obtain the samples directly from p(x).
I Regions of high density p(x) may not correspond to regions where F(x) departs most

from it mean value (and thus each F(x) evaluation might have very high variance).



Importance sampling

Idea: Sample from a proposal distribution q(x) and weight those samples by p(x)/q(x).

Samples x (t) ∼ q(x):Z
F(x)p(x)dx =

Z
F(x)

p(x)

q(x)
q(x)dx ' 1

T

TX
t=1

F(x (t))
p(x (t))

q(x (t))
,

provided q(x) is non-zero wherever p(x) is; weights w(x (t)) ≡ p(x (t))/q(x (t))

q(x)

p(x)

I handles cases where p(x) is difficult to sample.
I can direct samples towards high values of integrand F(x)p(x), rather than just high

p(x) alone (e.g. p prior and F likelihood).



Analysis of importance sampling

Attractions:
I Unbiased: Eq [F(x)w(x)] =

R
F(x) p(x)

q(x)
q(x)dx = Ep [F(x)].

I Variance could be smaller than simple Monte Carlo if

Eq
ˆ
(F(x)w(x))2˜− Eq [F(x)w(x)]2 < Ep

ˆ
F(x)2˜− Ep [F(x)]2

“Optimal” proposal is q(x) = p(x)F(x)/Zq : every sample yields same estimate
F(x)w(x) = F(x) p(x)

p(x)F(x)/Zq
= Zq ; but normalising requires solving the original problem!

Problems:
I May be hard to construct or sample q(x) to give small variance.
I Variance of weights could be unbounded: V [w(x)] = Eq

ˆ
w(x)2

˜
− Eq [w(x)]2

Eq [w(x)] =

Z
q(x)w(x)dx = 1

Eq
ˆ
w(x)2˜ =

Z
p(x)2

q(x)2
q(x)dx =

Z
p(x)2

q(x)
dx

e.g. p(x) = N (0, 1), q(x) = N (1, .1)⇒ V [w ] =
R

e49x2
; Monte Carlo average may be

dominated by few samples, not even necessarily in region of large integrand.



Importance sampling — unnormalised distributions

Suppose we only know p(x) and/or q(x) up to constants,

p(x) = p̃(x)/Zp q(x) = q̃(x)/Zq

where Zp, Zq are unknown/too expensive to computem but that we can nevertheless draw
samples from q(x).

I We can still apply importance sampling by estimating the normaliser:Z
F(x)p(x)dx ≈

P
t F(x (t))w(x (t))P

t w(x (t))
w(x) =

p̃(x)

q̃(x)

I This estimate is only consistent (biased for finite T , converges to true value as T →∞).
I In particular, we have

1
T

X
t

w(x (t))→
fi

p̃(x)

q̃(x)

fl
q

=

Z
dx

Zpp(x)

Zqq(x)
q(x) =

Zp

Zq

so with known Zq we can estimate the partition function of p.
I (Importance sampled integral with F(x) = 1.)



Importance sampling — effective sample size

Variance of weights is critical to variance of estimate:

V [w(x)] = Eq
ˆ
w(x)2˜− Eq [w(x)]2

Eq [w(x)] =

Z
q(x)w(x)dx = 1

Eq
ˆ
w(x)2˜ =

Z
p(x)2

q(x)2
q(x)dx =

Z
p(x)2

q(x)
dx

A small effective sample size may diagnose ineffectiveness of importance sampling. Popular
estimate:

„
1 + Vsample

»
w(x)

Esample [w(x)]

–«−1

=

“P
t w(x (t))

”2P
t w(x (t))2

However large effective sample size does not prove effectiveness (if no high weight samples
found, or if q places little mass where F(x) is large).



Drawing samples

Now, consider the problem of generating samples from an arbitrary distribution p(x).

Standard samplers are available for Uniform[0, 1] and N (0, 1).

I Other univariate distributions:

u ∼ Uniform[0, 1]

x = G−1(u) with G(x) =

Z x

−∞
p(x ′)dx ′ the target CDF

I Multivariate normal with covariance C:

ri ∼ N (0, 1)

x = C
1
2 r [⇒

˙
xxT¸ = C

1
2
˙
rrT¸C 1

2 = C]



Rejection Sampling

Idea: sample from an upper bound on p(x), rejecting some samples.
I Find a distribution q(x) and a constant c such that ∀x , p(x) ≤ cq(x)

I Sample x∗ from q(x) and accept x∗ with probability p(x∗)/(cq(x∗)).
I Reject the rest.

cq(x)

p(x)

dx

Let y∗ ∼ Uniform[0, cq(x∗)]; then the joint proposal (x∗, y∗) is a point uniformly drawn from
the area under the cq(x) curve.

The proposal is accepted if y∗ ≤ p(x∗) (i.e. proposal falls in red box). The probability of this
is = q(x)dx ∗ p(x)/cq(x) = p(x)/c dx .

Thus accepted x∗ ∼ p(x) (with average probability of acceptance 1/c).



Rejection Sampling

Attractions:
I Unbiased; accepted x∗ is true sample from p(x).
I Diagnostics easier than (say) importance sampling: number of accepted samples is true

sample size.

Problem:
I It may be difficult to find a q(x) with a small c⇒ lots of wasted area.

Examples:
I Compute p(Xi = b|Xj = a) in a directed graphical model: sample from P(X),

reject if Xj 6= a, averaging the indicator function I(Xi = b)
I Compute E

ˆ
x2|x > 4

˜
for x ∼ N (0, 1)

Unnormalized Distributions: say we only know p(x), q(x) up to a constant,

p(x) = p̃(x)/Zp q(x) = q̃(x)/Zq

where Zp, Zq are unknown/too expensive to compute, but we can still sample from q(x).

We can still apply rejection sampling if using c with p̃(x) ≤ cq̃(x). Still unbiased.



Relationship between importance and rejection sampling

cq(x)

p(x)

dx

If we have c for which q(x) is an upper bound on p(x), then importance weights are upper
bounded:

p(x)

q(x)
≤ c

So importance weights have finite variance and importance sampling is well-behaved.

Upper bound condition makes both rejection sampling work and importance sampling
well-behaved.



Learning in Boltzmann Machines

log p(sV sH |W , b) =
X

ij

Wij si sj −
X

i

bi si − log Z

with Z =
P

s e
P

ij Wij si sj−
P

i bi si .

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

D
log p(sV sH |W , b)

E
p(sH |sV )

Write 〈〉c (clamped) for expectations under p(sH |sV ). Then

∇Wij = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) an expectation under the current joint distribution p(sH , sV ).



Computing expectations

How do we find the required expectations?

I Junction tree is generally intractable in all but the sparsest nets (triangulation of loops
makes cliques grow very large).

I Rejection and Importance sampling require good proposal distributions, which are
difficult to find.

I Loopy belief propagation fails in nets with strong correlations.
I Mean-field methods are possible, but approximate (and pretty inaccurate).

Easy to compute conditional samples: given settings of nodes in the Markov blanket of si can
compute and normalise the scalar p(si ) and toss a (virtual) coin.

This suggests an iterative approach:
I Choose variable settings randomly (set any clamped nodes to clamped values).
I Cycle through (unclamped) si , choosing si ∼ p(si |s\i ).

After enough samples, we might expect to reach a sample from the correct distribution.

This is an example of Gibbs Sampling. Also called the heat bath or Glauber dynamics.



Markov chain Monte Carlo (MCMC) methods

Suppose we seek samples from a distribution p∗(x).

Let us construct a Markov chain:

x0 → x1 → x2 → x3 → x4 → x5 . . .

where x0 ∼ p0(x) and T (x → x ′) = p(Xt = x ′|Xt−1 = x) is the Markov chain transition
probability from x to x ′, and we can easily sample from each of these.

Then the marginal distributions in the chain are xt ∼ pt (x) with the property that:

pt (x ′) =
X

x

pt−1(x)T (x → x ′)

Under some conditions, these marginals converge to an invariant/stationary/equilibrium
distribution characterised by T with:

p∞(x ′) =
X

x

p∞(x)T (x → x ′) ∀x ′

If we can choose a T (x → x ′) so as to ensure p∞ = p∗ and sample from the Markov chain
for long enough, we can obtain samples from distributions arbitrarily close to p∗.



Constructing a Markov chain for MCMC
When does the Markov chain x0 → x1 → x2 → x3 → . . . with marginals x0 ∼ p0(x) and

pt (x ′) =
X

x

pt−1(x)T (x → x ′)

according to transition probability T (x → x ′) have the right invariant distribution?

I First we need convergence to a unique stationary distribution regardless of initial state
x0 ∼ p0(x): this is a form of ergodicity.

lim
t→∞

pt (x) = p∞(x)

A sufficient condition for the Markov chain to be ergodic is that

T k (x → x ′) > 0 for all x and x ′ where p∞(x ′) > 0 and some k . (*)

That is, if the equilibrium distribution gives non-zero probability to state x ′, then the
Markov chain should be able to reach x ′ from any x after some finite number of steps, k .

I A useful sufficient condition for p∗(x) being invariant is detailed balance:

p∗(x ′)T (x ′ → x) = p∗(x)T (x → x ′) (**)

If T and p∗ satisfy both (*) and (**) then the marginal of the chain defined by T will
converge to p∗.



Gibbs Sampling

A method for sampling from a multivariate distribution, p(x)
Idea: sample from the conditional of each variable given the settings of the other variables.

Repeatedly:
1) pick i (either at random or in turn)
2) replace xi by a sample from the conditional distribution

p(xi |x\i ) = p(xi |x1, . . . , xi−1, xi+1, . . . xn)

Gibbs sampling is feasible if it is easy to sample from the
conditional probabilities.
This creates a Markov chain

x(1) → x(2) → x(3) → . . .

Example: 20 (half-) itera-
tions of Gibbs sampling on
a bivariate Gaussian

Under some (mild) conditions, the equilibium distribution, i.e. p(x(∞)), of this Markov chain
is p(x).



Detailed balance for Gibbs sampling

We can show that Gibbs sampling has the right stationary distribution p(x) by showing that
the detailed balance condition is met.

The transition probabilities are given by:

T (x→ x′) = πi p(x ′i |x\i )

where πi is the probability of choosing to update the i th variable (to handle rotation updates
instead of random ones, we need to consider transitions due to one full sweep).

Then we have:

T (x→ x′)p(x) = πi p(x ′i |x\i ) p(xi |x\i )p(x\i )| {z }
p(x)

and

T (x′ → x)p(x′) = πi p(xi |x′\i ) p(x ′i |x′\i )p(x′\i )| {z }
p(x′)

But x′\i = x\i so detailed balance holds.



Gibbs Sampling in Graphical Models

Initialize all variables to some settings. Sample each variable conditional on other variables
(equivalently, conditional on its Markov blanket).
The BUGS software implements this algorithm for very general probabilistic models (but not
too big ones).



The Metropolis-Hastings algorithm
Gibbs sampling can be slow (p(xi ) may be well determined by x\i ), and conditionals may be
intractable. Global transition might be better.
Idea: Propose a change to current state; accept or reject.
(A kind of rejection sampling)

Each step: Starting from the current state x,

1. Propose a new state x′ using a proposal distribution
S(x′|x) = S(x→ x′).

2. Accept the new state with probability:
min

`
1, p(x′)S(x′ → x)/p(x)S(x→ x′)

´
;

3. Otherwise retain the old state.

Example: 20 iterations of global metropolis sampling from bivariate Gaussian; rejected
proposals are dotted.

I Metropolis algorithm was symmetric S(x′|x) = S(x|x′). Hastings generalised.
I Local (changing one or few xi ’s) vs global (changing all x) proposal distributions.
I Efficiency dictated by balancing between high acceptance rate and large step size.
I May adapt S(x→ x′) to balance these, but stationarity only holds once S is fixed.
I Note, we need only to compute ratios of probabilities (no normalizing constants).



Detailed balance for Metropolis-Hastings

The transition kernel is:

T (x→ x′) = S(x→ x′) min
„

1,
p(x′)S(x′ → x)

p(x)S(x→ x′)

«
with T (x→ x) the expected rejection probability.

Without loss of generality we assume p(x′)S(x′ → x) ≤ p(x)S(x→ x′).

Then

p(x)T (x→ x′) = p(x)S(x→ x′) · p(x′)S(x′ → x)

p(x)S(x→ x′)

= p(x′)S(x′ → x)

and

p(x′)T (x′ → x) = p(x′)S(x′ → x) · 1
= p(x′)S(x′ → x)



Practical MCMC

Markov chain theory guarantees that

1
T

TX
t=1

F(xt )→ E [F(x)] as T →∞.

But given finite computational resources we have to compromise. . .

I Convergence diagnosis is hard. Usually plot various useful statistics, e.g. log probability,
clusters obtained, factor loadings, and eye-ball convergence.

I Control runs: initial runs of the Markov chain used to set parameters like step size etc for
good convergence. These are discarded.

I Burn-in: discard first samples from Markov chain before convergence.

I Collecting samples: usually run Markov chain for a number of iterations between
collected samples to reduce dependence between samples.

I Number of runs: for the same amount of computation, we can either run one long
Markov chain (best chance of convergence), lots of short chains (wasted burn-ins, but
chains are independent), or in between.



Practical MCMC

I Multiple transition kernels: different transition kernels have different convergence
properties and it may often be a good idea to use multiple kernels.

I Mixing MCMC transitions in a way that depends on the last sample (“adaptive
transition”) risks breaking detailed balance with respect to the target and creating a
different invariant distribution.

I Can sometimes be rescued by treating mixed transitions as a mixture proposal
distribution and introducing Hastings accept/reject step.

I Integrated autocorrelation time: estimate of the amount of time taken for F(xt ) to
become independent (no guarantees, probably underestimates true autocorrelation
time). Assume wlog E [F(x)] = 0.

V

"
1
T

TX
t=1

F(xt )

#
= E

24 1
T

TX
t=1

F(xt )

!2
35 =

V [F(x)]

T

 
1 + 2

T−1X
t=1

„
1− t

T

«
Ct

C0

!

where Ct = E [F(xi )F(xi+t )] are the autocorrelation times. The integrated
autocorrelation time, the factor within parentheses, is the number of correlated samples
we need in excess of true iid samples to achieve the same variance. As T →∞, this is:

1 + 2
∞X
t=1

Ct

C0



Annealing

Very often, need to sample from unnormalised distribution:

p(x) =
1
Z

e−E(x)

MCMC sampling works well in this setting but may mix slowly. For Gibbs sampling, usually
possible to normalise conditional).

Often useful to introduce temperature 1/β:

pβ(x) =
1

Zβ
e−βE(x)

When β → 0 (temperature→∞) all states are equally likely: easy to sample and mix.
As β → 1, pβ → p.

Simulated annealing: start chain with β small and gradually increase to 1. Can be used for
optimisation by taking β →∞ (provably finds global mode, albeit using exponentially slow
annealing schedule).

Annealed importance sampling: use importance sampling to correct for fact that chain need
not have converged at each β. Equivalently, use annealing to construct a good proposal for
importance sampling.



Auxilliary variable methods

Many practical MCMC methods are based on the principle of auxilliary variables:

I Want to sample from p∗(x), but suitable Markov chain is either difficult to design, or
does not mix well.

I Introduce a new variable y , defined using conditional p(y |x).

I Sample from joint p∗(x)p(y |x) (often by Gibbs).

I Discard the ys. The xs are drawn from the target p∗.



Hybrid/Hamiltonian Monte Carlo: overview

I The transition processes of the Metropolis-Hastings and Gibbs algorithms are
essentially shaped random walks.

I The typical distance traveled by a random walk in n steps is proportional to
√

n. Thus
these methods explore the distribution slowly. We would like to seek regions of high
probability while avoiding random walk behavior.

I Let the target distribution be p(x), and suppose that we can compute the gradient of p
with respect to x.

I Can we use the gradient information to shape a proposal distribution without breaking
detailed balance?

I Hybrid or Hamiltonian Monte Carlo: introduce a fictitious physical system describing a
particle with position x and momentum v (an auxilliary variable).

I Make proposals by simulating motion in the dynamical system so that the marginal
distribution over position corresponds to the target.

I MH acceptance step corrects for errors of discretised simulation.



Hamiltonian Monte Carlo: the dynamical system

In the physical system, “positions” x corresponding to the random variables of interest are
augmented by momentum variables v:

p(x, v) ∝ exp(−H(x, v)) E(x) = − log p(x)

H(x, v) = E(x) + K (v) K (v) =
1
2

X
i

v2
i

With these definitions
Z

p(x, v)dv = p(x) (the desired distribution) and p(v) = N(0, I).

We think of E(x) as the potential energy of being in state x, and K (v) as the kinetic energy
associated with momentum v. We assume “mass” = 1, so momentum = velocity.

The physical system evolves at constant total energy H according to Hamiltonian dynamics:

dxi

dτ
=
∂H
∂vi

= vi
dvi

dτ
= −∂H

∂xi
=
∂E
∂xi

.

The first equation says derivative of position is velocity. The second equation says that the
system accelerates in the direction that decreases potential energy.

Think of a ball rolling on a frictionless hilly surface.



Hamiltonian Monte Carlo: how to simulate the dynamical system

We can simulate the above differential equations by discretising time and iterating over finite
differences on a computer. This introduces small (we hope) errors. (The errors we care about
are errors which change the total energy—we will correct for these by occasionally rejecting
moves that change the energy.)

A good simulation scheme for HMC is given by leapfrog simulation. We take L discrete steps
of size ε to simulate the system evolving for Lε time:

v̂i (τ + ε
2 ) = v̂i (τ)− ε

2
∂E(x̂(τ))

∂xi

x̂i (τ + ε) = x̂i (τ) + ε
v̂i (τ + ε

2 )

mi

v̂i (τ + ε) = v̂i (τ + ε
2 )− ε

2
∂E(x̂(τ + ε))

∂xi



Hamiltonian Monte Carlo: properties of the dynamical system

Hamiltonian dynamics has the following important properties:

I preserves total energy, H,
I is reversible in time
I preserves phase space volumes (Liouville’s theorem)

The leapfrog discretisation only approximately preserves the total energy H, but
I is reversible in time
I preserves phase space volume

The dynamical system is simulated using the leapfrog discretisation and the new state is
used as a proposal in the Metropolis algorithm to eliminate errors introduced by the leapfrog
approximation



Stochastic dynamics

Changes in the total energy, H, are introduced by interleaving the deterministic leapfrog
transitions with stochastic updates of the momentum variables.

Since the distribution of the momenta are independent Gaussian, this is easily done by a
trivial Gibbs sampling step (which doesn’t depend on x).

In practice, it is often useful to introduce persistence in momentum to further suppress
random walks:

vi = αvi +
p

1− α2ε,

where ε ∼ N (0, 1) and the persistence parameter 0 ≤ α < 1.



Hamiltonian Monte Carlo Algorithm

1. A new state is proposed by deterministically simulating a trajectory with L discrete steps
from (x, v) to (x∗, v∗). To compensate for errors of discretisation, the new state (x∗, v∗)
is accepted with probability:

min
“

1,
p(v∗, x∗)
p(v, x)

”
= min(1, e−(H(v∗,x∗)−H(v,x)))

otherwise the state remains the same. [Formally, Metropolis step with proposal defined
by choosing direction of momentum uniformly at random and simulating L (reversible)
leapfrog steps.]

2. Resample the momentum vector (by a trivial Gibbs sampling step or with persistence)

v ∼ p(v|x) = p(v) = N (0, I)

Example: L = 20 leapfrog iterations when sampling from a
bivariate Gaussian



Langevin Monte Carlo

If we take exactly one leapfrog step, then the HMC updates reduce to:

v ∼ N (0, I)

x∗i = xi + εv̂i (τ + ε
2 ) = xi −

ε2

2
∂E(xi )

∂xi
+ εvi

v∗i = v̂i (τ + ε
2 )− ε

2
∂E(x∗i )

∂xi
= vi −

ε

2
∂E(xi )

∂xi
− ε

2
∂E(x∗i )

∂xi

paccept = min
„

1,
p(x∗)
p(x)

e−
1
2 (‖v∗‖2−‖v‖2)

«

Note that the proposal for x∗ looks like a step up the gradient of log p(x) plus Gaussian noise.
The relative scales of the step and noise are adjusted to keep Hamiltonian energy constant.

I Possible to rewrite acceptance probability in terms of (x, x∗) alone: equivalent to
Hastings acceptance rule taking asymmetric proposal into account.

I In practice, with small ε, a single leapfrog step introduces very small discretisation errors
in energy so paccept ≈ 1.

I Thus, acceptance step is often neglected: Langevin sampling
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Slice sampling
I Efficient auxilliary-variable Gibbs sampler for low-dimensional distributions: can be used

as an internal component for a high-D Gibbs or M-H chain.

p∗(x)

I Start with sample x .
I Sample auxilliary variable y |x ∼ Uniform[0, p∗(x)]

p(x , y) = p∗(x)p(y |x) =

(
p∗(x) 1

p∗(x)
= 1 if 0 ≤ y ≤ p∗(x)

0 otherwise

I Sample x ′ from p(x ′|y)

p(x ′|y) ∝ p(x ′, y) =

(
1 if p∗(x ′) ≥ y

0 otherwise

So x ′ ∼ Uniform[{x : p∗(x) ≥ y}].
I Defining {x : p∗(x) ≥ y} often difficult – rejection sample in (adaptive) y-level “slice”

around old x extending outside at least local mode.
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Slice sampling – defining the y-level slices

p∗(x)

y ′

I Finding the boundaries of {x : p∗(x) ≥ y} requires inverting the density function: often
very difficult.

I Target stationary distribution is uniform under p∗(x) density curve. So to preserve
stationarity it is sufficient to have:

I ergodicity
I detailed balance⇒ T ((x , y)→ (x ′, y ′)) = T ((x ′, y ′)→ (x , y)).

I ⇒ sufficient to transition uniformly within local mode (assuming contiguous support).
I Grow slice in steps of size ∆ until both ends are above density;

rejection sample.
I First step randomly positioned around current sample.
I Slice may cross over neighbouring modes.

If so, keep extending. Same process
started at sample in next mode can cross back into initial mode, preserving
reversibility.

I When rejection sampling, any samples that fall above density can be used to restrict
proposal slice (adaptive RS).
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Evaluating the evidence — Annealed Importance Sampling (AIS)

I Bayesian learning often depends on evaluating the marginal likelihood

p(D) =

Z
dθ p(D|θ)p(θ)

I Prior mass and likelihood may not agree, so simple Monte-Carlo estimate (with samples
drawn from p(θ)) may have high variance (particularly in high dimensions).

I Samples from unnormalised posterior p(θ|D) ∝ p(D|θ)p(θ) can often be found by
MCMC; but samples alone do not provide estimate of p(D).

I Idea: use MCMC transitions from known distribution to form proposal for importance
sampling.
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Annealed importance sampling

I Consider a sequence of densities

pj (x) =
1
Zj

p∗(x)βj p
1−βj
0 1 = β1 > · · · > βn = 0

where p1 = p∗ is the target density and p0 = pn is easy to sample and normalise
(perhaps a prior).

I Let Tj (x → x ′) be an MCMC transition rule that leaves pj invariant.

I Draw samples from q(x1 . . . xn−1) = pnTn−1 . . . T2:

x (t)
n−1 ∼ pn; x (t)

n−2 ∼ Tn−1(x (t)
n−1 → ·); . . . ; x (t)

1 ∼ T2(x (t)
2 → ·)

I Importance weight samples with

w (t) =

 
p∗(x (t)

1 )

p0(x (t)
1 )

!β1−β2
 

p∗(x (t)
2 )

p0(x (t)
2 )

!β2−β3

. . .

 
p∗(x (t)

n−1)

p0(x (t)
n−1)

!βn−1−βn

I Then:

1
T

X
t

w (t) → Z∗
Z0



Annealed importance weights
I Define the reversed transition probability:

←
T j (x ′ → x) = Tj (x → x ′)

pj (x)

pj (x ′)

(only a different function if detailed balance doesn’t hold).
I We drew samples from joint q(x1 . . . xn−1). Need a joint target:

p(x1 . . . xn−1) = p1(x1)
←
T 2(x1 → x2)

←
T 3(x2 → x3) . . .

←
T n−1(xn−2 → xn−1)

(Note that x1 is drawn from the target distribution p∗).
I Importance weights are:

w (t) =
p
q

=
p1(x (t)

1 )
←
T 2(x (t)

1 → x (t)
2 )
←
T 3(x (t)

2 → x (t)
3 ) . . .

←
T n−1(x (t)

n−2 → x (t)
n−1)

T2(x (t)
2 → x (t)

1 )T3(x (t)
3 → x (t)

2 ) . . . Tn−1(x (t)
n−1 → x (t)

n−2)pn(x (t)
n−1)

= p1(x (t)
1 )

p2(x (t)
2 )

p2(x (t)
1 )

p3(x (t)
3 )

p3(x (t)
2 )

. . .
pn−1(x (t)
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Other Ideas in MCMC

I Rao-Blackwellisation or collapsing: integrate out variables that are tractable to lower
variance or improve convergence.

I Exact sampling: yield exact samples from the equilibrium distribution of a Markov chain,
making use of the idea of coupling from the past—if two Markov chains use the same
set of pseudo-random numbers, then even if they started in different states, once they
transition to the same state they will stay in the same state.

I Adaptive rejection sampling: during rejection sampling, if sample rejected use it to
improve the proposal distribution.

I Nested sampling: another, quite different, Monte-Carlo integration method.

I . . .



Sampling – Importance Resampling (SIR)
Consider message passing in an analytically intractable graphical model (e.g. a NLSSM),
where we represent messages using samples.

I MCMC requires burn-in to generate accurate samples. Unsuited to online settings.
I Proposal-based methods (e.g., rejection sampling) generate an immediate samples.
I SIR is another proposal-based approach to generating samples from an unnormalised

distribution

I Sample ξ(s) ∼ q(x), and calculate importance weights w (s) = p(ξ(s))/q(ξ(s)).
I Define q̃(x) =

PS
s=1 w (s)δ(x − ξ(s))

.PS
s=1 w (s).

I Resample x (t) ∼ q̃(x).

Resampled points yield consistent expectations (as in Importance Sampling),

Ex [F(x)] =

Z
dx F(x)q̃(x) =

Z
dx F(x)

PS
s=1 w (s)δ(x − ξ(s))PS

s=1 w (s)

=

PS
s=1 w (s)F(ξ(s))PS

s=1 w (s)

but are not unbiased for S <∞ even if all distributions are normalised.
I For integration, SIR introduces added sampling noise relative to IS (although trades off

with weight variance). But for message passing unweighted samples are redrawn
towards bulk of distribution.



Sequential Monte Carlo — particle filtering

y1 y2 y3 yT

x1 x2 x3 xT

• • •

Suppose we want to compute p(yt |x1 . . . xt ) in an NLSSM. We have

p(yt |x1 . . . xt ) ∝
Z

p(yt yt−1xt |x1 . . . xt−1) dyt−1

=

Z
p(xt |yt )p(yt |yt−1)p(yt−1|x1 . . . xt−1) dyt−1

If we have samples y(s)
t−1 ∼ p(yt−1|x1 . . . xt−1) we can recurse (approximately):

I draw y(s)
t ∼ p(yt |y(s)

t−1)

I calculate (unnormalised) weights w (s)
t = p(xt |y(s)

t ).

I resample y(s′)
t ∼

PS
s=1 w (s)

t δ(y− y(s)
t )
.PS

s=1 w (s)
t

This is called Particle Filtering (this version, with q = p(yt |y(s)
t−1) is also called a “bootstrap

filter” or “condensation” algorithm).



Particle filtering

I Technically, the entire trajectory y(s)
1 , y(s)

2 , . . . , y(s)
t is resampled. As S →∞, surviving

trajectories are drawn from full posterior (but not for practical sample sizes).

I Resampling can be avoided by propagating weights instead. However variance in
weights accumulates. Resampling helps eliminate unlikely particles, reducing variance.

I Possible to trigger resample events conditioned on variance – “stratified resampling”.

I Better proposal distributions (including, ideally, p(yt |y(s)
t−1, xt ) if available) improve

performance.

I Particle smoothing is possible, but often has high variance. Difficult to create a good
proposal.

I Widely used in engineering tracking applications, where filtering is most appropriate.

I Many variants . . .
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