Log-likelihoods

Probabilistic & Unsupervised Learning > Exponential family models: p(x|0) = f(x)e” ™/ Z(0)
0) = 0" T(x) — Nlog Z(6) (+ constants)

n

The EM algorithm > Concave function.
» Maximum may be closed-form.

> If not, numerical optimisation is still generally straightforward.
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> Usually no closed form optimum.
Term 1, Autumn 2013 > Often multiple local maxima.
> Direct numerical optimisation may be possible but infrequently easy.

Example: mixture of Gaussians The joint-data likelhood
Data: X = {x1 . ~-XN}
» For many models, maximisation might be straightforward if y were not latent, and we
Latent process: could just maximise the joint-data likelihood:
s S Disc[]
T
Component distributions: £(0x,0y) qu(Bx,yn Tx(xn)+6, ZTy (Yn)— Z'Og Z(p(0x,¥n))—Nlog Z,(6y)

X ‘ (Si = m) ~ Pm[gm] :N(,umyzm)

Marginal distribution: » Conversely, if we knew 6, we could compute (the posterior over) the values of y.

Xj) = Z TmPm(X; Om) » |dea: update @ and (the distribution on) y in alternation, converging to a self-consistent
answer.

Log-likelihood: » Will this yield the right answer?

n k
— (x, I—Lm)sz (Xi—pm)
(({pm}, {Zn}, ™) = Z Z |27T): 2 » Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.
-

m=



The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood. It starts from arbitrary values of the
parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

» Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. MoGs).

» Decomposes difficult problems into series of tractable steps.
» No learning rate.
» Framework lends itself to principled approximations.

» How does it work?

The lower bound for EM - “free energy”

Observed data X = {x;}; Latent variables Y = {y,}; Parameters 6 = {6y, 6, }.
Log-likelihood:

£(0) = log P(X|0) = log /dy P(Y, x|0)
By Jensen, any distribution, g()’), over the latent variables generates a lower bound:

_ P(Y, X|0) P(Y, X|0) acr
((0) = log / 4 () g > / @y a(¥)log ") F(q.0).

Now,
(¥, x10)

/ dy g(»)log © e / dY g(¥)log P(Y, X|0) - / dY 4()log 4()

_ /dy q() log P(V, X|8) + H[d],

where H[q] is the entropy of g()).

So:
F(q,0) = (log P(¥, X(0)) ) + Hlq]

Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

log(axi + (1 —a)x) ----------_
alog(x1) + (1 — a)log(x) ------
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X1 aXi + (1 — a)Xz X2
In general:
Fora; >0,> aj =1 (and {x; > 0}): For probability measure « and concave f
|OQ (Z Oé,'X,') Z Z (e Iog(x;) f(Ea [X]) 2 EDé [f(X)]
i i

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of a.

The E and M steps of EM

The lower bound on the log likelihood is given by:

F(a.0) = (log PV, X]0))y, + Hld],

EM alternates between:
> E step: optimize F(q, 0) wrt distribution over hidden variables holding parameters fixed:

q"(Y) := argmax F(q(¥),0" V).
a(y)

» M step: maximize F (g, ) wrt parameters holding hidden distribution fixed:

0% = argmax F(q" (), 0) = argmax (log P(Y, X10)) 4 )
0 0

The second equality comes from the fact H [q(")(y)} does not depend directly on 6.



The E Step

The free energy can be re-written

P(Y, X|6)
q(y) d
P(Y|X,0)P(X|0)

q(y)

F(q,0) = / a(Y) log

= / q(Y)log ay

:/q(y) log P(X]6) dy+/q(y) lo

= £(0) — KL[g(V)[IP(V|X, 0)]

The second term is the Kullback-Leibler divergence.

P(Y|X,0)

a(y) e

This means that, for fixed 6, F is bounded above by ¢, and achieves that bound when

KL[g(Y)[[P(Y]X,0)] = 0.
But KL[q||p] is zero if and only if g = p (see appendix.)

So, the E step sets
g (V) = P(Y]x, 60" 77)

and, after an E step, the free energy equals the likelihood.

Coordinate Ascent in 7 (Demo)

Coordinate Ascent in / (Demo)

To visualise, we consider a one parameter / one latent mixture:

s ~ Bernoulli[~]
X|S=0NN[_1,1] X|S=1NN[1,1]-

Single data point x; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].

EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

(9% - F q(k)’e(k—ﬂ < F q(k),e(k) < p(® ’
( ) E step ( )Mﬁep ( )Jen_sen @)

» The E step brings the free energy to the likelihood.
» The M-step maximises the free energy wrt 6.
» F < ¢ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that ok #* %=1 iff F increases, then the overall EM iteration
will step to a new value of @ iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).



Partial M steps and Partial E steps EM for MoGs

Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm). » Evaluate responsibilities
In fact, immediately after an E step

Pm(X)mm
m = =% 70—
) ] ot P ()T
2 )('09 P(X, Y10)) g )i=rvix 06—y = 3 ( )'09 P(x10) ’ » Update parameters
olk—1 o(k—1 s
, , L o Z FimXi
So E-step (inference) can be used to construct other gradient-based optimisation schemes o Z P
m
(e.g. “Expectaton Conjugate Gradient”, Salakhutdinov et al. /ICML 2003). * T
: s o 2 m(Xi = pm)(Xi — pim)

" i Fim
Partial E steps: We can also just increase F wrt to some of the gs. - e > fim

o =im
For example, sparse or online versions of the EM algorithm would compute the posterior for a ) N
subset of the data points or as the data arrives, respectively. One might also update the
posterior over a subset of the hidden variables, while holding others fixed...

The Gaussian mixture model (E-step) The Gaussian mixture model (M-step)
In the M-step we optimize the sum (since s is discrete):
In a univariate Gaussian mixture model, the density of a data point x is: P P ( )
‘ o 1 = (log p(x. 519)) o = D a(s) loglp(s|9) p(x]s.0)]
pUx10) = 37 pls = mifp(xls = m.0) o D= " exp { — 55 (x — un)’},

1 2
pe pr = Xm: fin[10g T —l0g o — 575 (x = pum)°]
where @ is the collection of parameters: means p, variances o2, and mixing proportions
wm = p(s = m|0).

The hidden variable s; indicates which component generated observation x;. Optimum is found by setting the partial derivatives of E to zero:

0 (X/' - Hm) Z limXi
. . 8NmE:Zrim 202, =0 = un= Z'r/m ’
The E-step computes the posterior for s; given the current parameters: i !
>, fim(Xi — pm)?
q(s) = p(silxi, 0) o p(xi|si, 0)p(si|6) E Zr”"[ _ + (xi Hm) ] =0 = o5 =4 'mX:/r m 7
i lim
def

rm = q(si=m) o Z—: exp{ — ZjTrzn(x; — pm)z} (responsibilities) < (0s=m),

m

OE
87I'E Zlm m, 8T+A_O = Tm= — Zn’m,
with the normalization such that )~ rim = 1.

where ) is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



EM for Factor Analysis

The model for x:

p(xi6) = [ p(yIO)p(xly. O)dly = N0, AN + )

@ @ cee Model parameters: 6 = {A, V}.

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gn(yn) = p(Yn|Xn, ).

M step: Find the 0;.1 that maximises F(q, 0):
Fla.0) = Y / n(Yn) [log p(Ys|0) + log p(Xa|Yn, 0) — log gn(yn)] dyn
n

= > / an(yn) [log p(y»|6) + log p(xnlys, 0)] dyn + c.

The M step for Factor Analysis

M step: Find 6:1 by maximising F = Z (log p(yn|0) + log p(Xn|Yn, 0))

n

an(yn) +c

log p(yn|®) + log p(xn|yn, 0)

Toy,—

1 1 1
=c— Ey;Vn -3 log V] — E(X" — AYn) W (X0 — AYa)

=c - % log |W| — % [xx\ll"xn —2x) W Ay, + yIAT\Il’1/\yn]

=c - % log |W| — % [x;\ll_1x,, —2x] WAy, + Tr [/\T\IJ_1/\ynyIH

Taking expectations wrt gn(yn):

—c— % log || — % [XI\V”X” — X W A, 4+ T [/\Tw*‘/\(unul + Z)H

Note that we don’t need to know everything about g(ya), just the moments (y,) and (yays).
These are the expected sufficient statistics.

The E step for Factor Analysis

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gn(Yn) = P(Yn|Xn, ) = p(¥n, Xa|6)/P(Xx|6)

Tactic: write p(yn, X»|0), consider x, to be fixed. What is this as a function of y,?
P(Yn, Xn) = p(yn)p(Xnlyn)
= (em) 2 exp{f%vﬁyn} orw| 2 exp{*%(xn = Ayn) W (X0 — Ayn)}
= ¢cx exp{—%[y;w + (%0 — Ayn) "W (x5 — Ayn)]}
= ¢ox exp{*%[vl(l + AW A )y, — 2y ATU T 0 }
= o'x eXp{—%[vIZ’Wn —2yn T+ pn T ] }

SoY =(/+A" VA =1—BAand p, = EATV "X, = Bx,. Where B = TATUT,
Note that wt, is a linear function of x, and X does not depend on X,.

The M step for Factor Analysis (cont.)

N

F=c —log|V| - % 3 [xﬁw*‘xn — 2T A, + T [/\Tw*‘/\(unul + Z)“

n

Taking derivatives wrt A and W™, using 27481 — AT and 2190141 — A= T:
OF _ _
an =Y "> Xepn — VA <N2+Zunul) =0
n n

1

= N\= <Z XnuI> <N2+Zunuz>

OF N
)

]
T =2V [xan — AptaXl — Xoph AT 4+ Al + Z)AT]
n

1
=V = N ; [xnxz — /\y.,,xl — Xnu;/\T + /\(unp,; + ):)/\T]

~ ;o T :
W=ATAT+ > (%0 = Apn)(Xo — Apin) (squared residuals)

n

Note: we should actually only take derivatives w.r.t. W4, since W is diagonal.
As ~ — 0 these become the equations for ML linear regression



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

P(xX[0) = 7k N (e, MMk + W)
k

where 7, is the mixing proportion for FA k, pu is its centre, A is its “factor loading matrix”,
and V¥ is a common sensor noise model. 6 = {{mx, px, Ak fr=1..k, ¥}
We can think of this model as having two sets of hidden latent variables:

» A discrete indicator variable s, € {1,... K}
» For each factor analyzer, a continous factor vector y, x € R

K
p(ci6) = 3 p(s:16) [ plyisn Op(xoly. 51.6) dy
sp=1
As before, an EM algorithm can be derived for this model:
E step: We need moments of p(Yn, Sn|Xn, 0), specifically: (ds,=m), (ds,=m¥n) and
<5sn:mynyx>-
M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf
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EM for exponential families

EM is often applied to models whose joint over z = (y, x) has exponential-family form:
p(z|0) = f(z) exp{6'T(2)}/2(6)

(with Z(0) = [ f(z) exp{07T(z)}dz) but whose marginal p(x) & ExpFam.
The free energy dependence on 6 is given by:

F(q,0) = /Q(V) log p(y, x|0)dy — H[q]
= /q(y) [67T(z) — log Z(6)] dy + const wrt 0
= GT(T(z)>q(y) —log Z(0) + const wrt 6

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:

a% log Z(8) = ﬁa%zw) _ ﬁ% (z) exp{07T(2)}
= / 77 1(2) exp{0'T(2)} - T(2) = (T(2)|6)
Thus, the M step solves: %g = (T(@),) — (T@)) =0

Proof of the Matrix Inversion Lemma

(A+XBX) " =AT" — AT X(BT + X AT X) T XA
Need to prove:
(A—1 —AT'X(B™ + XTA_1X)_1XTA_1> (A+XxBX") =1
Expand:
I+ A 'XBXT— A X(BT + XA X) X" — AT X(BT + XTAT'X) T XTAT XBXT
Regroup:
—I+A "X (BXT — BT+ XTATX) X — (B + XTA*‘X)*‘XTA*‘XBXT)
—I+A'X (BXT — B+ XATX) B BX — (B + XTA"X)"XTA"XBXT)
—I+A'X (BXT — BT+ XATX) (B XTA"X)BXT)

=1+ A'X(BX"—BX") =1



KL[q(x)|lp(x)] > 0, with equality iff Vx : p(x) = g(x)

First consider discrete distributions; the Kullback-Liebler divergence is:
KL[g]lp] = > _ gilog %
i
To minimize wrt distribution g we need a Lagrange multiplier to enforce normalisation:
E = KLqllp] +A(1— > a) = alog % +A(1 =D a)
i i i

Find conditions for stationarity

OE
8(]{

% = 1—Zq,:0¢2q,:1

Check sign of curvature (Hessian):

= logg —logpi+1—A=0= g = piexp(A—1)
= qi = pi.

8%E 1 PE

=—>0, =0
8gi0q i 0qi0q;

S0 unique stationary point g; = p; is indeed a minimum. Easily verified that at that minimum,

KL[q||p] = KL[p||p] = 0.
A similar proof holds for continuous densities, using functional derivatives.

Maxima in F correspond to maxima in /

Let 8* now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt 6 again we find

d d® d
W@(@) = ﬁ('OQ P(Y, X16)) oy x,6+) — ﬁ('OQ P(VIX,0)) p(y 2,00

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

f* is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].

Fixed Points of EM are Stationary Points in /

Let a fixed point of EM occur with parameter 8. Then:
0
%009 PV, X [ 0)) pyix,00) o 0

Now, £(6) = log P(X[6) = (109 P(X10) iy .0

_ <Iog P(y,X|0)>
PONX0) [ ey,
= (log P(y7X|9)>P(y\X,G*) — (log P(y|X70)>P(y\X,G*)

SO, d

d d
@5(9) = @('09 PV, X10)) py|x,00) — @('09 P(VIX,0)) p(yx,0%)

The second term is 0 at 6" if the derivative exists (minimum of KL[-||-]), and thus:

d d
EE(Q) . = @009 P(Y, X‘9)>P()}|X,9*) =0

9=

So, EM converges to a stationary point of £(6).
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