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Tractable Models

I Factor analysis, principle components analysis, probabilistic PCA.
I Linear regression, Gaussian processes.
I Mixture of Gaussians, mixture of experts.
I Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
I Linear Gaussian,
I Discrete variables,
I Chains and trees (or junction trees),
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Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need
to go beyond the confines of these structures

In this half of the course (and today) we will study:

I hierarchical models,
I distributed models,
I nonlinear models,
I non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require
approximate inference.



Why We Need . . . Nonlinear/Non-Gaussian Models

Much of the world is neither linear nor Gaussian
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. . . and most interesting structure we would like to learn about is not either.

Why We Need . . . Hierarchical (Deep) Models
Many generative processes can be naturally described at different levels of detail.

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

Biology seems to have developed hierarchical representations.

Why We Need . . . Distributed Models

s1 s2 s3 sT

x1 x2 x3 xT

• • •

Consider a hidden Markov model. To capture N bits of information about the history of the
sequence, an HMM requires K = 2N states.

In a distributed representation each data point is represented by a vector of (discrete or
continous) attibutes. Some attributes might be latent.

I For example, consider a model used to predict election outcome.
I One might simply assign each voter to one of 4 classes: Labour, Tory, Lib-Dem and

Undecided. This is not a distributed representation — each person is described by a
single 4-valued discrete variable.

I A better approach might be to model voters using a group of attributes, e.g.:
(Tory, Single, Black, Female, 34 yrs, Urban, Liberal, £35k p.a.).

I These attributes resemble factors, but may be discrete (and non-Gaussian), and may
outnumber the observed dimensions.

Such distributed representations can be exponentially more efficient than clustering.

A Generative Model for Generative Models
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Blind Source Separation

Sometimes called the cocktail party problem.

?

I Given signals from one or more receivers that mix signals from one or more sources,
recover the timeseries of the source signals.

I Independent components analysis: assumes that sources are independent and
non-Gaussian.

Natural Scenes and Sounds
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Independent Components Analysis
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These distributions are gen-
erated by linearly combining
(or mixing) two non-Gaussian
sources.

I The ICA graphical model is identical to factor analysis:

xd =
K∑

k=1

Λdk yk + εd

with yk ∼ Py non-Gaussian. x1 x2 xD

y1 y2 yK• • •

• • •

Differences:
I Well-posed even with K ≥ D (e.g., K = D = 2 above).
I With non-zero noise, MAP inference is non-linear, and the full posterior is non-Gaussian.
I This makes making exact inference and learning difficult for most Py .

Square, Noiseless Causal ICA

I The special case of K = D, and zero observation noise has been studied extensively
(standard infomax ICA, c.f. PCA):

x = Λy which implies y = Wx where W = Λ−1

where y are the independent components (factors), x are the observations, and W is the
unmixing matrix.

I The likelihood can be obtained by transforming the density of y to that of x. If F : y 7→ x
is a differentiable bijection, and if dy is a small neighbourhood around y, then

Px (x)dx = Py (y)dy = Py (F−1(x))

∣∣∣∣dy
dx

∣∣∣∣ dx = Py (F−1(x))
∣∣∇F−1∣∣ dx

I This gives (for parameter W ):

P(x|W ) = |W |
∏

k

Py ([Wx]k︸ ︷︷ ︸
yk

)

where py is marginal probability distribution of factors.



Infomax ICA
I Consider a feedforward model:

yi = Wi x; zi = fi (yi )

with a monotonic squashing function fi (−∞) = 0, fi (+∞) = 1.
I Infomax finds filtering weights W maximizing the information carried by z about x:

argmax
W

I(x; z) = argmax
W

H(z)− H(z|x) = argmax
W

H(z)

Thus we just have to maximize entropy of z: make it as uniform as possible on [0, 1]
(note squashing function).

I But if data were generated from a square noiseless causal ICA then best we can do is if

zi = fi (yi ) = cdfi (yi ) and W = Λ−1

Infomax ICA⇔ square noiseless causal ICA.
I Another view: redundancy reduction in the representation z of the data x.

argmax
W

H(z) = argmax
W

∑
i

H(zi )− I(z1, . . . , zD)

See: MacKay (1996), Pearlmutter and Parra (1996), Cardoso (1997) for equivalence, Teh et
al (2003) for an energy-based view.

Learning in ICA

I Log likelihood of data:

log P(x) = log |W |+
∑

i

log Py (Wi x)

I Learning by gradient ascent:

∆W ∝ ∇W = W−T + g(y)xT g(y) =
∂ log Py (y)

∂y

I Better approach: natural gradient

∆W ∝ ∇W (W TW ) = W + g(y)yTW

(see MacKay 1996).
I Note: we can’t use EM in the square noiseless causal ICA model. Why?

Kurtosis

The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is:

K =
E((x − µ)4)

E((x − µ)2)2
− 3, where µ = E(x) is the mean of x .

Gaussian distributions have zero kurtosis.

Heavy tailed: positive kurtosis (leptokurtic). Light tailed: negative kurtosis (platykurtic).

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer
assumptions about generating distributions.

ICA and BSS

Applications:
I Separating auditory sources
I Analysis of EEG data
I Analysis of functional MRI data
I Natural scene analysis
I . . .

Extensions:
I Non-zero output noise – approximate posteriors and learning.
I Undercomplete (K < D) or overcomplete (K > D).
I Learning prior distributions (on y).
I Dynamical hidden models (on y).
I Learning number of sources.
I Time-varying mixing matrix.
I Nonparametric, kernel ICA.
I . . .



Blind Source Separation

?

I ICA solution to blind source separation assumes no dependence across time; still works
fine much of the time.

I Many other algorithms: DCA, SOBI, JADE, . . .
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Nonlinear dynamical system

y1 y2 y3 yT

x1 x2 x3 xT

u1 u2 u3 uT

• • •
Ãt Ãt Ãt Ãt

C̃t C̃t C̃t C̃t

B̃t B̃t B̃t B̃t

D̃t D̃t D̃t D̃t

yt+1 = f (yt , ut ) + wt

xt = g(yt , ut ) + vt

wt , vt usually assumed Gaussian.

Extended Kalman Filter (EKF): linearise nonlinear functions about current estimate, ŷt
t :

yt+1 ≈ f (ŷt
t , ut )︸ ︷︷ ︸

B̃t ut

+
∂f
∂yt

∣∣∣∣
ŷt

t︸ ︷︷ ︸
Ãt

(yt − ŷt
t ) + wt

xt ≈ g(ŷt
t , ut )︸ ︷︷ ︸

D̃t ut

+
∂g
∂yt

∣∣∣∣
ŷt

t︸ ︷︷ ︸
C̃t

(yt − ŷt
t ) + vt

−2 −1.5 −1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7

x

f(
x)

Run the Kalman filter (smoother) on non-stationary linearised system (Ãt , B̃t , C̃t , D̃t ):
I No guarantees: approximates non-Gaussian by a Gaussian.
I Works acceptably for close-to-linear systems.
I Other approaches: sigma-point; quadrature; EP; sequential Monte Carlo.

Can base EM-like algorithm on EKF/EKS or alternatives.



Learning (online EKF)

The EKF (or related methods) can also be used to implement online parameter learning in
(non)linear latent state-space systems:

Augment state vector to include the model parameters

ỹt = [yt ,A,C]

ỹt+1 = f (ỹt ) + noise

Use EKF to compute online E[ỹt |x1, . . . , xt ] and Cov[ỹt |x1, . . . , xt ]. These now include
parameter estimates.

I Pseudo-Bayesian approach: gives distributions over parameters.
I Handle nonstationarity by assuming innovations noise in A,C at each time step..
I Not clear that it works for Q and R (e.g. covariance constraints?).
I May be faster than EM/gradient approaches.

Sometimes called the “joint-EKF” approach.

Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a
vector of binary variables si ∈ {0, 1}. Some variables may
be hidden, some may be visible (observed).

P(s|W , b) =
1
Z

exp

{∑
ij

Wij si sj −
∑

i

bi si

}

where Z is the normalization constant (partition function).

Learning algorithm: a gradient version of EM
I E step involves computing averages w.r.t. P(sH |sV ,W , b) (“clamped phase”). This could

be done either exactly or (more usually) approximately using Gibbs sampling or loopy
BP.

I The M step requires gradients w.r.t. Z , which can be computed by averages w.r.t.
P(s|W , b) (“unclamped phase”).

∇Wij = 〈si sj〉c − 〈si sj〉u

Learning in Boltzmann Machines

log P(sV sH |W , b) =
∑

ij

Wij si sj −
∑

i

bi si − log Z

with Z =
∑

s e
∑

ij Wij si sj−
∑

i bi si

Generalised (gradient M-step) EM requires parameter step

∆Wij ∝
∂

∂Wij

〈
log P(sV sH |W , b)

〉
P(sH |sV )

Write 〈〉c (clamped) for expectations under P(s|sV ) (with P(sV |sV ) = 1). Then

∇Wij =
∂

∂Wij

[∑
ij Wij〈si sj〉c −

∑
i bi〈si〉c − log Z

]
= 〈si sj〉c −

∂

∂Wij
log Z

= 〈si sj〉c −
1
Z

∂

∂Wij

∑
s

e
∑

ij Wij si sj−
∑

i bi si

= 〈si sj〉c −
∑

s

1
Z

e
∑

ij Wij si sj−
∑

i bi si si sj

= 〈si sj〉c −
∑

s

P(s|W , b)si sj = 〈si sj〉c − 〈si sj〉u

with 〈〉u (unclamped) an expectation under the current joint distribution.

Sigmoid Belief Networks

• • •

• • •

• • •

Directed graphical model (i.e. a Bayesian network) over a
vector of binary variables si ∈ {0, 1}.

P(s|W , b) =
∏

i

P(si |{sj}j<i ,W , b)

P(si = 1|{sj}j<i ,W , b) =
1

1 + exp{−
∑

j<i Wij sj − bi}

I parents most often grouped into layers
I logistic function of linear combination of parents
I “generative multilayer perceptron” (“neural network”)

Learning algorithm: a gradient version of EM
I E step involves computing averages w.r.t. P(sH |sV ,W , b). This could be done either

exactly or approximately using Gibbs sampling or mean field approximations. Or using a
parallel ‘recognition network’ (the Helmholtz machine).

I Unlike Boltzmann machines, there is no partition function, so no need for an unclamped
phase in the M step.



Factorial Hidden Markov Models

s(1)
1 s(1)

2 s(1)
3 s(1)

T
• • •

s(2)
1 s(2)

2 s(2)
3 s(2)

T
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s(3)
1 s(3)

2 s(3)
3 s(3)

T
• • •

x1 x2 x3 xT

I Hidden Markov models with many state variables (i.e. distributed state representation).
I Each state variable evolves independently.
I The state can capture many bits of information about the sequence (linear in the number

of state variables).
I E step is typically intractable (due to explaining away in latent states).

Dynamic Bayesian Networks
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I Distributed HMM with structured dependencies amongst latent states.

Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.

Global climate change and mammalian species diversity in U.S. national parks
National parks and bioreserves are key conservation tools used to protect species and their
habitats within the confines of fixed political boundaries. This inflexibility may be their
”Achilles’ heel” as conservation tools in the face of emerging global-scale environmental
problems such as climate change. Global climate change, brought about by rising levels of
greenhouse gases, threatens to alter the geographic distribution of many habitats and their
component species....

The influence of large-scale wind power on global climate
Large-scale use of wind power can alter local and global climate by extracting kinetic energy
and altering turbulent transport in the atmospheric boundary layer. We report climate-model
simulations that address the possible climatic impacts of wind power at regional to global
scales by using two general circulation models and several parameterizations of the
interaction of wind turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers
The relation between changes in modern glaciers, not including the ice sheets of Greenland
and Antarctica, and their climatic environment is investigated to shed light on paleoglacier
evidence of past climate change and for projecting the effects of future climate warming on
cold regions of the world. Loss of glacier volume has been more or less continuous since the
19th century, but it is not a simple adjustment to the end of an ”anomalous” Little Ice Age....

Topic Modelling

Example topics discovered from PNAS abstracts (each topic represented in terms of the top 5
most common words in that topic).



Recap: Beta Distributions
Recall the Bayesian coin toss example.

P(H|q) = q P(T |q) = 1− q

The probability of a sequence of coin tosses is:

P(HHTT · · ·HT |q) = q#heads(1− q)#tails

A conjugate prior for q is the Beta distribution:

P(q) =
Γ(a + b)

Γ(a)Γ(b)
qa−1(1− q)b−1 a, b ≥ 0
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Dirichlet Distributions

Imagine a Bayesian dice throwing example.

P(1|q) = q1 P(2|q) = q2 P(3|q) = q3 P(4|q) = q4 P(5|q) = q5 P(6|q) = q6

with qi ≥ 0,
∑

i qi = 1. The probability of a sequence of dice throws is:

P(34156 · · · 12|q) =
6∏

i=1

q# face i
i

A conjugate prior for q is the Dirichlet distribution:

P(q) =
Γ(
∑

i ai )∏
i Γ(ai )

∏
i

qai−1
i qi ≥ 0,

∑
i qi = 1 ai ≥ 0

Dirichlet [1,1,1]

 q
1

 q
2

Dirichlet [2,2,2]

 q
1

 q
2

Dirichlet [2,10,2]

 q
1

 q
2

Dirichlet [0.9,0.9,0.9]

 q
1

 q
2

Latent Dirichlet Allocation

Each document is a sequence of words, we model it using a mixture model by ignoring the
sequential nature—“bag-of-words” assumption.

xid

zid

word i=1...Nd

θd

α

document d=1...D

φk

topic k=1...K

β

I Draw topic distributions from a prior

φk ∼ Dir(β, . . . , β)

I For each document:
I draw a distribution over topics

θd ∼ Dir(α, . . . , α)

I generate words iid:
I draw topic from a document-specific dist:

zid ∼ Discrete(θd )

I draw word from a topic-specific dist:

xid ∼ Discrete(φzid )

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Latent Dirichlet Allocation as Matrix Decomposition

Let Ndw be the number of times word w appears in document d , and Pdw is the probability of
word w appearing in document d .

p(N|P) =
∏
dw

PNdw
dw likelihood term

Pdw =
∑

k

p(pick topic k)p(pick word w |k) =
K∑

k=1

θdkφkw

Pdw = θdk · φkw

This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to
non-negative matrix factorisation (NMF).



Latent Dirichlet Allocation

I Exact inference in latent Dirichlet allocation is intractable, and typically either variational
or Markov chain Monte Carlo approximations are deployed.

I Latent Dirichlet allocation is an example of a mixed membership model from statistics.
I Latent Dirichlet allocation has also been applied to computer vision, social network

modelling, natural language processing. . .
I Generalizations:

I Relax the bag-of-words assumption (e.g. a Markov model).
I Model changes in topics through time.
I Model correlations among occurrences of topics.
I Model authors, recipients, multiple corpora.
I Cross modal interactions (images and tags).
I Nonparametric generalisations.

Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionaliy reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear
manifold:

I Nonlinear autoencoders
I Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
I Multi-dimensional scaling (MDS)
I Kernel PCA (based on MDS representation)
I Isomap
I Locally linear embedding (LLE)
I Stochastic Neighbour Embedding
I Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products

We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We
obtain similar results if we approximate the Gram matrix:

minimise E =
∑

ij

(Gij − yi · yj )
2

for y ∈ Rk .

That is, look for a k -dimensional embedding in which dot products (which depend on lengths,
and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between points.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

G = UΛUT arranged so λ1 ≥ · · · ≥ λm ≥ 0

The best rank-k approximation G ≈ Y TY is given by:

Y T = [U]1:m,1:k [Λ1/2]1:k,1:k ;

= [UΛ1/2]1:m,1:k

Y = [Λ1/2UT]1:k,1:m



√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m



y1 y2 · · · ym

The same operations can be performed on the kernel Gram matrix⇒ Kernel PCA.



Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities” ∆ij .

∆ =


0 ∆12 ∆13 ∆14

∆12 0 ∆23 ∆24

∆13 ∆23 0 ∆34

∆14 ∆24 ∆34 0



Goal: Find vectors yi such that ‖yi − yj‖ ≈ ∆ij .

This is called Multidimensional Scaling (MDS).

Metric MDS

Assume the dissimilarities represent Euclidean distances between points in some high-D
space.

∆ij = ‖xi − xj‖ with
∑

i

xi = 0.

We have:

∆2
ij = ‖xi‖2 + ‖xj‖2 − 2xi · xj∑

k

∆2
ik = m‖xi‖2 +

∑
k

‖xk‖2 − 0∑
k

∆2
kj =

∑
k

‖xk‖2 + m‖xj‖2 − 0∑
kl

∆2
kl = 2m

∑
k

‖xk‖2

⇒ Gij = xi · xj =
1
2

(
1
m

∑
k

(∆2
ik + ∆2

kj )−
1

m2

∑
kl

∆2
kl −∆2

ij

)

Metric MDS and eigenvalues

We will actually minimize the error in the dot products:

E =
∑

ij

(Gij − yi · yj )
2

As in PCA, this is given by the top slice of the eigenvector matrix.

√
λ1 uT

1√
λ2 uT

2

...

√
λk uT

k

...

√
λm uT

m



y1 y2 · · · ym

Interpreting MDS

G =
1
2

(
1
m

(∆21 + 1∆2)−∆2 − 1
m2

1T∆21
)

G = UΛUT; Y = [Λ1/2UT]1:k,1:m

(1 is a matrix of ones.)

I Eigenvectors. Ordered, scaled and truncated to yield low-dimensional embedded
points yi .

I Eigenvalues. Measure how much each dimension contributes to dot products.
I Estimated dimensionality. Number of significant (nonnegative – negative possible if

∆ij are not metric) eigenvalues.



MDS and PCA

Dual matrices:

S =
1
m

XX T scatter matrix (n × n)

G = X TX Gram matrix (m ×m)

I Same eigenvalues up to a constant factor.
I Equivalent on metric data, but MDS can run on non-metric dissimilarities.
I Computational cost is different.

I PCA: O((m + k)n2)
I MDS: O((n + k)m2)

Non-metric MDS

MDS can be generalised to permit a monotonic mapping:

∆ij → g(∆ij ),

even if this violates metric rules (like the triangle inequality).

This can introduce a non-linear warping of the manifold.

But

Rank ordering of Euclidean distances is

NOT preserved in “manifold learning”.

B

A

C

ABC

d(A,C) < d(A,B) d(A,C) > d(A,B)

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed)
Euclidean distances in MDS.

I preserves local structure
I estimates “global” structure
I preserves information (MDS)



Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to be local on the
manifold). Euclidean distances are preserved within a neighbourhood.

2. For points outside the neighbourhood, estimate distances by hopping between points
within neighbourhoods.

3. Embed using MDS.

Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
I vertices represent input points
I undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected.
I Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Geodesics

Estimate distances by shortest path in graph.

∆ij = min
path(xi ,xj )

{ ∑
ei∈path(xi ,xj )

δi

}

I Standard graph problem. Solved by Dijkstra’s algorithm (and others).
I Better estimates for denser sampling.
I Short cuts very dangerous (“average” path distance?) .

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)

I Eigenvectors of Gram matrix yield low-dimensional embedding.
I Number of significant eigenvalues estimates dimensionality.



Isomap example 1 Isomap example 2

Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA
preserves local and global structure.
Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

I preserves local structure (not just distance)
I not explicitly global
I preserves only local information

Stages of LLE



Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap
graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:
I Graph is singly-connected — although will “work” if not.
I Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k -nearest neighbours, inputs within a ball of radius r ,
prior knowledge.

Step 2: Local weights

Estimate local weights to minimize error

Φ(W ) =
∑

i

∥∥∥∥∥xi −
∑

j∈Ne(i)

Wij xj

∥∥∥∥∥
2

∑
j∈Ne(i)

Wij = 1

I Linear regression – under- or over-constrained depending on |Ne(i)|.
I Local structure – optimal weights are invariant to rotation, translation and scaling.
I Short cuts less dangerous (one in many).

Step 3: Embed

Minimise reconstruction errors in y-space under the same weights:

ψ(Y ) =
∑

i

∥∥∥∥∥yi −
∑

j∈Ne(i)

Wij yj

∥∥∥∥∥
2

subject to:∑
i

yi = 0;
∑

i

yi y
T
i = mI

We can re-write the cost function in quadratic form:

ψ(Y ) =
∑

ij

Ψij [Y
TY ]ij with Ψ = (I −W )T(I −W )

Minimise by setting Y to equal the bottom 2 . . . k + 1 eigenvectors of Ψ. (Bottom eigenvector
always 1 – discard due to centering constraint)

LLE example 1

Surfaces

N=1000
inputs

k=8
nearest
neighbors

D=3
d=2

dimensions



LLE example 2 LLE example 3

LLE and Isomap

Many similarities
I Graph-based, spectral methods
I No local optima

Essential differences
I LLE does not estimate dimensionality
I Isomap can be shown to be consistent; no theoretical guarantees for LLE.
I LLE diagonalises a sparse matrix – more efficient than isomap.
I Local weights vs. local & global distances.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.



Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.

2. Find {yi} ⊂ Rn (points in high-D space) with maximum variance, preserving local
distances. Let Kij = yT

i yj . Then:

Maximise Tr [K ] subject to:∑
ij Kij = 0 (centered)

K � 0 (positive definite)

Kii − 2Kij + Kjj︸ ︷︷ ︸
‖yi−yj‖2

= ‖xi − xj‖2 for j ∈ Ne(i) (locally metric)

This is a semi-definite program: convex optimisation with unique solution.

3. Embed yi in Rk using linear methods (PCA/MDS).

Stochastic Neighbour Embedding

Softer “probabilistic” notions of neighbourhood and consistency.

High-D “transition” probabilities:

pj|i =
e−

1
2 ‖xi−xj‖2/σ2∑

k 6=i e−
1
2 ‖xi−xk‖2/σ2

for j 6= i, pi|i = 0

Find {yi} ⊂ Rk to:

minimise
∑

ij

pj|i log
pj|i

qj|i
with qj|i =

e−
1
2 ‖yi−yj‖2∑

k 6=i e−
1
2 ‖yi−yk‖2

.

Nonconvex optimisation is initialisation dependent.

Scale σ plays a similar role to neighbourhood definition:
I Fixed σ: resembles a fixed-radius ball.
I Choose σi to maintain consistent entropy in pj|i of log2 k : similar to k -nearest

neighbours.

SNE variants

I Symmetrise probabilities (pij = pji )

pij =
e−

1
2 ‖xi−xj‖2/σ2∑

k 6=l e−
1
2 ‖xl−xk‖2/σ2

for j 6= i

I Gaussian Process Latent Variable Models. Lawrence. Advances in Neural Information
Processing Systems, 2004.
Define qij analagously, optimise joint KL.

I Heavy-tailed embedding distributions allow embedding to lower dimensions than true
manifold:

qij =
(1 + ‖yi − yj‖2)−1∑
k 6=l (1 + ‖yk − yl‖2)−1

Student-t distribution defines “t-SNE”.

Focus is on visualisation, rather than manifold discovery.

Gaussian Process Latent Variable Models

Recap: probabilistic PCA

yi |xi ,Λ ∼ N (Λxi , β
−1I)

xi ∼ N (0, I)

Usually: compute posterior over X = [x1, . . . , xN ]>, maximizing likelihood over Λ.

Suppose we know the values of the latent X , then we can integrate out Λ (c.f. linear
regression), giving a conditional probability of Y = [y1 . . . yN ]>:

Λ ∼ N (0, α−1I)

p(Y |X) ∼ |2πK |−
D
2 exp

(
−1

2
Tr[K−1YY>]

)
K = αXX> + βI

This is just D independent Gaussian processes, one for each dimension of Y ! Each
Gaussian process describes a mapping from latent space x to one dimension of y.

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear
dimensionality reduction.

But now dependence on X is complicated—instead of computing a posterior over X we can
only find point values that maximise the likelihood (jointly with the hyperparameters).



Gaussian Process Latent Variable Models Intractability

For many probabilistic models of interest, exact inference is not computationally feasible.
This occurs for three (main) reasons:

I Distributions may have complicated forms (e.g. non-linearities in generative model).
I “Explaining away” causes coupling from observations

Observing the value of a child induces dependencies amongst its parents.

x1

y1 y2 yK• • •

I Even with simple models, being Bayesian and computing the full posterior over both
latent variables and parameters
There is often strong coupling between latent variables and parameters.

We can still work with such models by using approximate inference techniques to estimate
the latent variables.

Approximate Inference

I Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g.
the approximate mean or mode of the hidden variable distribution). Linear
approximations are particularly useful since Gaussian distributions are closed under
linear transformations (e.g., EKF). Also Laplace’s approximation.

I Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by
a set of random samples. We often need Markov chain Monte carlo or sequential Monte
Carlo methods to sample from difficult distributions.

I Variational Methods: Approximate the hidden variable posterior p(H) with a tractable
form q(H), such that KL[q‖p] is minimised. This gives a lower bound on the likelihood
that can be maximised with respect to the parameters of q(H).

I Local Message Passing Methods: Approximate the hidden variable posterior p(H) with
a tractable form q(H) or with a set of locally consistent tractable forms by other means
(loopy belief propagation, expectation propagation).

I Recognition Models: Approximate the hidden variable posterior distribution using an
explicit bottom-up recognition model/network.

References

I Pattern Classification. Duda, Hart and Stork. Wiley, 2000.
I A Unifying Review of Linear Gaussian Models. Roweis and Ghaharamani. Neural

Computation, 1999.
I Independent Component Analysis. Hyvarinen, Karhunan and Oja. John Wiley and Sons,

2001.
I Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for

Natural Images. Olshausen & Field Nature, 1996.
I A Learning Algorithm for Boltzmann Machines. Ackley, Hinton and Sejnowski. Cognitive

Science, 1985.
I Connectionist Learning of Belief Networks. Neal. Artificial Intelligence, 1992.
I Latent Dirichlet Allocation. Blei, Ng and Jordan. Journal of Machine Learning Research,

2003.
I Factorial Hidden Markov Models. Ghahramani and Jordan. Machine Learning, 1997.
I Dynamic Bayesian Networks: Representation, Inference and Learning. Kevin Murphy.

PhD Thesis, 2002.



References

I Isomap. Tenenbaum, de Silva & Langford, Science, 290(5500):2319–23 (2000).
I LLE. Roweis & Saul, Science, 290(5500):2323–6 (2000).
I Laplacian Eigenmaps. Belkin & Niyogi, Neural Comput 23(6):1373–96 (2003).
I Hessian LLE. Donoho & Grimes, PNAS 100(10): 5591–6 (2003).
I Maximum variance unfolding. Weinberger & Saul, Int J Comput Vis 70(1):77–90 (2006).
I Conformal eigenmaps. Sha & Saul ICML 22:785–92 (2005).
I SNE Hinton & Roweis, NIPS, 2002; t-SNE van der Maaten & Hinton, JMLR,

9:2579–2605, 2008.
I Gaussian Process Latent Variable Models Lawrence. Advances in Neural Information

Processing Systems, 2004.

More at: http://www.gatsby.ucl.ac.uk/~maneesh/dimred/

http://www.gatsby.ucl.ac.uk/~maneesh/dimred/

	Probabilistic & Unsupervised Learning[6ex] Beyond linear-Gaussian and Mixture models
	Tractable Models
	A Generative Model for Generative Models
	Expanding Our Horizons
	Why We Need … Nonlinear/Non-Gaussian Models
	Why We Need … Hierarchical (Deep) Models
	Why We Need … Distributed Models
	Blind Source Separation
	Natural Scenes and Sounds
	Independent Components Analysis
	Square, Noiseless Causal ICA
	Infomax ICA
	Learning in ICA
	Kurtosis
	ICA and BSS
	Blind Source Separation
	Images
	Natural Scenes
	Boltzmann Machines
	Learning in Boltzmann Machines
	Sigmoid Belief Networks
	Topic Modelling
	Topic Modelling
	Recap: Beta Distributions
	Dirichlet Distributions
	Latent Dirichlet Allocation
	Latent Dirichlet Allocation as Matrix Decomposition
	Latent Dirichlet Allocation
	Nonlinear dynamical systems
	Learning (online EKF)
	Factorial Hidden Markov Models
	Dynamic Bayesian Networks
	Nonlinear Dimensionality Reduction
	Another view of PCA: matching inner products
	Another view of PCA: matching inner products
	Multidimensional Scaling
	Metric MDS
	Metric MDS and eigenvalues
	Interpreting MDS
	MDS and PCA
	Non-metric MDS
	But
	Isomap
	Stages of Isomap
	Step 1: Adjacency graph
	Step 2: Geodesics
	Step 3: Embed
	Isomap example 1
	Isomap example 2
	Locally Linear Embedding (LLE)
	Stages of LLE
	Step 1: Neighbourhoods
	Step 2: Local weights
	Step 3: Embed
	LLE example 1
	LLE example 2
	LLE example 3
	LLE and Isomap
	Maximum Variance Unfolding
	Maximum Variance Unfolding
	Stochastic Neighbour Embedding
	SNE variants
	Gaussian Process Latent Variable Models
	Gaussian Process Latent Variable Models
	Intractability
	Approximate Inference
	References
	References

