
Probabilistic & Unsupervised Learning

Latent Variable Models

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science

University College London

Term 1, Autumn 2014

Exponential family models

I Simple, ’single-stage’ generative models.
I Easy, often closed-form expressions for learning and model comparison.
I . . . but limited in expressiveness.

What about distributions like these?

In each case, data may be generated by combining and transforming latent exponential
family variates.

Exponential family models

I Simple, ’single-stage’ generative models.
I Easy, often closed-form expressions for learning and model comparison.
I . . . but limited in expressiveness.

What about distributions like these?

In each case, data may be generated by combining and transforming latent exponential
family variates.

Exponential family models

I Simple, ’single-stage’ generative models.
I Easy, often closed-form expressions for learning and model comparison.
I . . . but limited in expressiveness.

What about distributions like these?

In each case, data may be generated by combining and transforming latent exponential
family variates.

Latent variable models

Explain correlations in x by assuming dependence on latent variables y

(e.g. objects, illumination, pose)

(e.g. object parts, surfaces)

(e.g. edges)

(retinal image, i.e. pixels)

y ∼ P[θy]

x | y ∼ P[θx]

p(x, y; θx , θy) = p(x | y; θx)p(y; θy)

p(x; θx , θy) =

∫
dy p(x | y; θx)p(y; θy)

Latent variable models

I Describe structured distributions.
I Correlations in high-dimensional x may be captured by fewer parameters.

I Capture an underlying generative process.
I y may describe causes of x.
I help to separate signal from noise.

I Combine exponential family distributions into richer, more flexible forms.
I P(y), P(x|y) and even P(x, y) may be in the exponential family
I P(x) rarely is. (Exception: Linear Gaussian models).

Latent variables and Gaussians
Gaussian correlation can be composed from latent components and uncorrelated noise.

x ∼ N
(

0,
[

3 2
2 3

])

⇔ y ∼ N (0, 1) x ∼ N
(√

2
[

1
1

]
y ,
[

1 0
0 1

])

Latent variables and Gaussians
Gaussian correlation can be composed from latent components and uncorrelated noise.

x ∼ N
(

0,
[

3 2
2 3

])
⇔ y ∼ N (0, 1) x ∼ N

(√
2
[

1
1

]
y ,
[

1 0
0 1

])

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy

= N
(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

Probabilistic Principal Components Analysis (PPCA)

If the uncorrelated noise is assumed to be isotropic, this model is called PPCA.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0, ψ) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy, ψI)

p(x) =

∫
p(y)p(x|y)dy = N

(
Ey [Λy] ,Ey

[
ΛyyTΛT

]
+ ψI

)
Note: Ex [f (x)] = Ey

[
Ex|y [f (x)]

]
Vx [x] = Ey [V [x|y]] + Vy [E [x|y]]

= N
(

0,ΛΛT + ψI
)

where Λ is a D × K matrix.

PPCA likelihood

The marginal distribution on x gives us the PPCA likelihood:

log p(X|Λ, ψ) = −N
2

log
∣∣∣2π(ΛΛT + ψI)

∣∣∣− 1
2

Tr
[

(ΛΛT + ψI)−1
∑

n

xxT

︸ ︷︷ ︸
NS

]

To find the ML values of (Λ, ψ) we could optimise numerically (gradient ascent / Newton’s
method), or we could use a different iterative algorithm called EM which we’ll introduce soon.

In fact, however, ML for PPCA is more straightforward in principle, as we will see by first
considering the limit ψ → 0.

[Note: We may also add a constant mean µ to the output, so as to model data that are not
distributed around 0. In this case, the ML estimate µ̂ = 1

N

∑
n xn and we can define

S = 1
N

∑
n(x− µ̂)(x− µ̂)T in the likelihood above.]

The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.

The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.

The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.

The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.

The ψ → 0 limit

As ψ → 0, the latent model can only capture K dimensions of variance.

In a Gaussian model, the ML parameters will find the K -dimensional space of most variance.

Principal Components Analysis

This leads us to an (old) algorithm called Principal Components Analysis (PCA).

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

Assume data D = {xi} have zero mean (if not, subtract it).

I Find direction of greatest variance – λ(1).

λ(1) = argmax
‖v‖=1

∑
n

(xT
nv)2

I Find direction orthogonal to λ(1) with greatest variance –
λ(2)

...
I Find direction orthogonal to {λ(1),λ(2), . . . ,λ(n−1)} with

greatest variance – λ(n).
I Terminate when remaining variance drops below a

threshold.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.

Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):

I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).

For a covariance matrix S =
〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):

I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more
eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):
I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more

eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):
I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more

eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.

I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):
I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more

eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

Eigendecomposition of a covariance matrix
The eigendecomposition of a covariance matrix makes finding the PCs easy.
Recall that u is an eigenvector, with scalar eigenvalue ω, of a matrix S if

Su = ωu

u can have any norm, but we will define it to be unity (i.e., uTu = 1).
For a covariance matrix S =

〈
xxT
〉

(which is D × D, symmetric, positive semi-definite):
I In general there are D eigenvector-eigenvalue pairs (u(i), ω(i)), except if two or more

eigenvectors share the same eigenvalue (in which case the eigenvectors are degenerate
— any linear combination is also an eigenvector).

I The D eigenvectors are orthogonal (or orthogonalisable, if ω(i) = ω(j)). Thus, they form
an orthonormal basis.

∑
i u(i)u(i)

T = I.
I Any vector v can be written as

v =
(∑

i

u(i)u(i)
T
)

v =
∑

i

(u(i)
Tv)u(i) =

∑
i

v(i)u(i)

I The original matrix S can be written:

S =
∑

i

ω(i)u(i)u(i)
T = UWUT

where U = [u(1), u(2), . . . , u(D)] collects the eigenvectors and
W = diag

[
(ω(1), ω(2), . . . , ω(D))

]
.

PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-
determined fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-
determined fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.

I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,
ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-
determined fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-
determined fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

PCA and eigenvectors

I The variance in direction u(i) is〈
(xTu(i))

2
〉

=
〈

u(i)
TxxTu(i)

〉
= u(i)

TSu(i) = u(i)
Tω(i)u(i) = ω(i)

I The variance in an arbitrary direction v is〈
(xTv)2

〉
=
〈(

xT
(∑

i

v(i)u(i)

))2〉
=
∑

ij

v(i)u(i)
TSu(j)v(j)

=
∑

ij

v(i)ω(j)v(j)u(i)
Tu(j) =

∑
i

v2
(i)ω(i)

I If vTv = 1, then
∑

i v2
(i) = 1 and so argmax‖v‖=1

〈
(xTv)2

〉
= u(max)

The direction of greatest variance is the eigenvector the largest eigenvalue.
I In general, the PCs are exactly the eigenvectors of the empirical covariance matrix,

ordered by decreasing eigenvalue.

I The eigenspectrum shows how the variance
is distributed across dimensions; can iden-
tify transitions that might separate signal from
noise, or the number of PCs that capture a pre-
determined fraction of variance.

0 10 20 30
0

20

40

60

80

100

eigenvalue number

ei
ge

nv
al

ue
 (

va
ria

nc
e)

0 10 20 30
0

0.2

0.4

0.6

0.8

1

eigenvalue number

fr
ac

tio
na

l v
ar

ia
nc

e
re

m
ai

ni
ng

PCA subspace
The K principle components define the K -dimensional subspace of greatest variance.

−5

0

5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−5

0

5

x
2

x
1

x 3

I Each data point xn is associated with a projection x̂n into the principle subspace.

x̂n =
K∑

k=1

xn(k)λ(k)

I This can be used for lossy compression, denoising, recognition, . . .

Example of PCA: Eigenfaces

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Example of PCA: Genetic variation within Europe

Novembre et al. (2008) Nature 456:98-101

Equivalent definitions of PCA

I Find K directions of greatest variance in data.

I Find K -dimensional orthogonal projection that preserves greatest
variance.

I Find K -dimensional vectors yi and matrix Λ so that x̂i = Λyi is as
close as possible (in squared distance) to xi .

I . . . (many others)

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).
Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y.

What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).
Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).
Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).
Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).

Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Another view of PCA: Mutual information

Problem: Given x, find y = Ax with columns of A unit vectors, s.t. I(y; x) is maximised
(assuming that P(x) is Gaussian).

I(y; x) = H(y) + H(x)− H(y, x) = H(y)

So we want to maximise the entropy of y. What is the entropy of a Gaussian?

H(z) = −
∫

dz p(z) ln p(z) =
1
2

ln |Σ|+ D
2

(1 + ln 2π)

Therefore we want the distribution of y to have largest volume (i.e. det of covariance matrix).

Σy = AΣx AT = AUWx UTAT

So, A should be aligned with the columns of U which are associated with the largest
eigenvalues (variances).
Projection to the principal component subspace preserves the most information about the
(Gaussian) data.

Linear autoencoders: From supervised learning to PCA

x1 x2 xD• • •input units

y1 yK• • •hidden units

x̂1 x̂2 x̂D• • •output units

P

Q

 decoder
“generation” encoder
“recognition”

Learning: argmin
P,Q

‖x̂− x‖2 x̂ = Qy y = Px

At the optimum, P and Q perform the projection and reconstruction steps of PCA. (Baldi &
Hornik 1989).

ML learning for PPCA

` = −
N

2
log |2πC| −

N

2
Tr
[
C−1S

]
where C = ΛΛT + ψI

∂`

∂Λ
=

N

2

(
−
∂

∂Λ
|C| −

∂

∂Λ
Tr
[
C−1S

])
=

N

2

(
−C−1Λ + C−1SC−1Λ

)
So at the stationary points we have SC−1Λ = Λ. This implies either:

I Λ = 0, which turns out to be a minimum.

I C = S ⇒ ΛΛT = S − ψI. Now rank(ΛΛT) ≤ K ⇒ rank(S − ψI) ≤ K
⇒ S has D − K eigenvalues = ψ and Λ aligns with space of remaining eigenvectors.

I or, taking the SVD: Λ = ULV T:

S(ULV TVLUT + ψI)−1ULV T = ULV T ×VL−1

⇒ S(UL2UT + ψI)−1U = U U(L2 + ψI) = (UL2UT + ψI)U
⇒ (UL2UT + ψI)−1U = U(L2 + ψI)−1

⇒ SU(L2 + ψI)−1 = U ×(L2 + ψI)

⇒ SU = U (L2 + ψI)︸ ︷︷ ︸
diagonal

⇒ columns of U are eigenvectors of S with eigenvalues given by l2i + ψ.
Thus, Λ = ULV T spans a space defined by K eigenvectors of S; and the lengths of the column
vectors of L are given by the eigenvalues −ψ (V selects an arbitrary basis in the latent space).

Remains to show (we won’t, but it’s intuitively reasonable) that the global ML solution is attained when Λ
aligns with the K leading eigenvectors.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.

I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.

I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

I In PCA the “noise” is orthogonal to the subspace, and we can project xn → x̃n trivially.
I In PPCA, the noise is more sensible (equal in all directions). But what is the projection?

Find the expected value of yn|xn and then take x̃n = Λyn.
I Tactic: write p(yn, xn|θ), consider xn to be fixed. What is this as a function of yn?

p(yn, xn) = p(yn)p(xn|yn)

= (2π)−
K
2 exp{−1

2
yT

nyn} |2πΨ|−
1
2 exp{−1

2
(xn − Λyn)TΨ−1(xn − Λyn)}

= c× exp{−1
2

[yT
nyn + (xn − Λyn)TΨ−1(xn − Λyn)]}

= c’× exp{−1
2

[yT
n(I + ΛTΨ−1Λ)yn − 2yT

nΛTΨ−1xn]}

= c”× exp{−1
2

[yT
nΣ−1yn − 2yT

nΣ−1µ+ µTΣ−1µ]}

So Σ = (I + ΛTΨ−1Λ)−1 = I − βΛ and µ = ΣΛTΨ−1xn = βxn. Where β = ΣΛTΨ−1.
I Thus, x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

I This is not the same projection. PPCA takes into account noise in the principal
subspace.

I As ψ → 0, the PPCA estimate→ the PCA value.

PPCA latents

principal subspace

PCA projectionPPCA noise

PPCA latent prior

PPCA projection

PPCA posterior

PPCA latents

principal subspace

PCA projection

PPCA noise

PPCA latent prior

PPCA projection

PPCA posterior

PPCA latents

principal subspace

PCA projection

PPCA noise

PPCA latent prior

PPCA projection

PPCA posterior

PPCA latents

principal subspace

PCA projection

PPCA noise

PPCA latent prior

PPCA projection

PPCA posterior

Factor Analysis
If dimensions are not equivalent, equal variance assumption is inappropriate.

Data: D = X = {x1, x2, . . . , xN}; xi ∈ RD

Latents: Y = {y1, y2, . . . , yN}; yi ∈ RK

Linear generative model: xd =
K∑

k=1

Λdk yk + εd

I yk are independent N (0, 1) Gaussian factors
I εd are independent N (0,Ψdd) Gaussian noise
I K <D

x1 x2 xD

y1 y2 yK• • •

• • •

Model for observations x is still a correlated Gaussian:

p(y) = N (0, I)

p(x|y) = N (Λy,Ψ)

p(x) =

∫
p(y)p(x|y)dy = N

(
0,ΛΛT + Ψ

)
where Λ is a D × K , and Ψ is K × K and diagonal.

Dimensionality Reduction: Finds a low-dimensional projection of high dimensional data that
captures the correlation structure of the data.

Factor Analysis (cont.)

x1 x2 xD

y1 y2 yK• • •

• • •

I ML learning finds Λ (“common factors”) and Ψ (“unique factors” or “uniquenesses”)
given data

I parameters (corrected for symmetries): DK + D − K (K−1)
2

I If number of parameters > D(D+1)
2 model is not identifiable (even after accounting for

rotational degeneracy discussed later)
I no closed form solution for ML params: N (0,ΛΛT + Ψ)

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛΛT + Ψ)

∣∣∣+
1
2

xT(ΛΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛΛT + Ψ)

∣∣∣+
1
2

xT(ΛΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛΛT + Ψ)

∣∣∣+
1
2

xT(ΛΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛΛT + Ψ)

∣∣∣+
1
2

xT(ΛΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛUTUΛT + Ψ)

∣∣∣+
1
2

xT(ΛUTUΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Factor Analysis projections

Our analysis for PPCA still applies:

x̃n = Λ(I + ΛTΨ−1Λ)−1ΛTΨ−1xn = xn −Ψ(ΛΛT + Ψ)−1xn

but now Ψ is diagonal but not spherical.

Note, though, that Λ is generally different from that found by PPCA.

And Λ is not unique: the latent space may be transformed by an arbitrary orthogonal
transform U (UTU = UUT = I) without changing the likelihood.

ỹ = Uy and Λ̃ = ΛUT ⇒ Λ̃ỹ = ΛUTUy = Λy

− ` =
1
2

log
∣∣∣2π(ΛUTUΛT + Ψ)

∣∣∣+
1
2

xT(ΛUTUΛT + Ψ)−1x

=
1
2

log
∣∣∣2π(Λ̃Λ̃T + Ψ)

∣∣∣+
1
2

xT(Λ̃Λ̃T + Ψ)−1x

Gradient methods for learning FA

Optimise negative log-likelihood:

−` =
1
2

log |2π(ΛΛT + Ψ)|+ 1
2

xT(ΛΛT + Ψ)−1x

w.r.t. Λ and Ψ (need matrix calculus) subject to constraints.

I No spectral short-cut exists.
I Likelihood can have more than one (local) optimum, making it difficult to find the global

value.
I For some data (“Heywood cases”) likelihood may grow unboundedly by taking one or

more Ψdd → 0. Can eliminate by assuming a prior on Ψ with zero density at Ψdd = 0,
but results sensitive to precise choice of prior.

Expectation maximisation (next week) provides an alternative approach to maximisation, but
doesn’t solve these issues.

FA vs PCA

I PCA and PPCA are rotationally invariant; FA is not

If x→ Ux for unitary U, then λPCA
(i) → UλPCA

(i)

I FA is measurement scale invariant; PCA and PPCA are not

If x→ Sx for diagonal S, then λFA
(i) → SλFA

(i)

I FA and PPCA define a probabilistic model; PCA does not

[Note: it may be tempting to try to eliminate the scale-dependence of (P)PCA by
pre-processing data to equalise total variance on each axis. But P(PCA) assume equal noise
variance. Total variance has contributions from both ΛΛT and noise, so this approach does
not exactly solve the problem.]

Canonical Correlations Analysis

Data vector pairs: D = {(u1, v1), (u2, v2) . . . } in spaces U and V .

Classic CCA
I Find unit vectors υ1 ∈ U , φ1 ∈ V such that the correlation of uT

i υ1 and vT
i φ1 is

maximised.
I As with PCA, repeat in orthogonal subspaces.

Probabilistic CCA
I Generative model with latent yi ∈ RK :

y ∼ N (0, I)

u ∼ N (Υy,Ψu) Ψu < 0

v ∼ N (Φy,Ψv) Ψv < 0

I Block diagonal noise.

Limitations of Gaussian, FA and PCA models

I Gaussian, FA and PCA models are easy to understand and use in practice.
I They are a convenient way to find interesting directions in very high dimensional data

sets, eg as preprocessing
I Their problem is that they make very strong assumptions about the distribution of the

data, only the mean and variance of the data are taken into account.

The class of densities which can be modelled is too restrictive.

−1 0 1

−1

0

1

 x
i1

 x
i2

By using mixtures of simple distributions, such as Gaussians, we can expand the class of
densities greatly.

Mixture Distributions

−1 0 1

−1

0

1

 x
i1

 x
i2

A mixture distribution has a single discrete latent variable:

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Mixtures arise naturally when observations from different sources have been collated.
They can also be used to approximate arbitrary distributions.

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi ; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi ; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi ; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi ; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

The Mixture Likelihood

The mixture model is

si
iid∼ Discrete[π]

xi | si ∼ Psi [θsi]

Under the discrete distribution

P(si = m) = πm; πm ≥ 0,
k∑

m=1

πm = 1

Thus, the probability (density) at a single data point xi is

P(xi) =
k∑

m=1

P(xi | si = m)P(si = m)

=
k∑

m=1

πmPm(xi ; θm)

The mixture distribution (density) is a convex combination (or weighted average) of the
component distributions (densities).

Approximation with a Mixture of Gaussians (MoG)

The component densities may be viewed as elements of a basis which can be combined to
approximate arbitrary distributions.

Here are examples where non-Gaussian densities are modelled (aproximated) as a mixture
of Gaussians. The red curves show the (weighted) Gaussians, and the blue curve the
resulting density.

−0.5 0 0.5 1 1.5
0

0.5

1

Uniform

−0.5 0 0.5 1 1.5
0

1

2

Triangle

−2 0 2
0

0.5

1

Heavy tails

Given enough mixture components we can model (almost) any density (as accurately as
desired), but still only need to work with the well-known Gaussian form.

Clustering with a MoG

Clustering with a MoG

Clustering with a MoG

In clustering applications, the latent variable si represents the (unknown) identity of the
cluster to which the i th observation belongs.

Thus, the latent distribution gives the prior probability of a data point coming from each
cluster.

P(si = m | π) = πm

Data from the mth cluster are distributed according to the mth component:

P(xi | si = m) = Pm(xi)

Once we observe a data point, the posterior probability distribution for the cluster it belongs to
is

P(si = m | xi) =
Pm(xi)πm∑
m Pm(xi)πm

This is often called the responsibility of the mth cluster for the i th data point.

The MoG likelihood

Each component of a MoG is a Gaussian, with mean µm and covariance matrix Σm. Thus,
the probability density evaluated at a set of n iid observations, D = {x1 . . . xn} (i.e. the
likelihood) is

p(D | {µm}, {Σm},π) =
n∏

i=1

k∑
m=1

πmN (xi | µm,Σm)

=
n∏

i=1

k∑
m=1

πm
1√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)

The log of the likelihood is

log p(D | {µm}, {Σm},π) =
n∑

i=1

log
k∑

m=1

πm
1√
|2πΣm|

e−
1
2 (xi−µm)TΣ−1

m (xi−µm)

Note that the logarithm fails to simplify the component density terms. A mixture distribution
does not lie in the exponential family. Direct optimisation is not easy.

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

Maximum Likelihood for a Mixture Model
The log likelihood is:

L =
n∑

i=1

log
k∑

m=1

πmPm(xi ; θm)

Its partial derivative wrt θm is

∂L
∂θm

=
n∑

i=1

πm∑k
m=1 πmPm(xi ; θm)

∂Pm(xi ; θm)

∂θm

or, using ∂P/∂θ = P × ∂ log P/∂θ,

=
n∑

i=1

πmPm(xi ; θm)∑k
m=1 πmPm(xi ; θm)︸ ︷︷ ︸

∂ log Pm(xi ; θm)

∂θm

=
n∑

i=1

rim
∂ log Pm(xi ; θm)

∂θm

And its partial derivative wrt πm is

∂L
∂πm

=
n∑

i=1

Pm(xi ; θm)∑k
m=1 πmPm(xi ; θm)

=
n∑

i=1

rim

πm

MoG Derivatives

For a MoG, with θm = {µm,Σm} we get

∂L
∂µm

=
n∑

i=1

rimΣ−1
m (xi − µm)

∂L
∂Σ−1

m
=

1
2

n∑
i=1

rim

(
Σm − (xi − µm)(xi − µm)T

)
These equations can be used (along with the derivatives wrt to πm) for gradient based
learning; e.g., taking small steps in the direction of the gradient (or using conjugate gradients).

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I, with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l
‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

I assign each point to its closest mean
(

set rim = δ(m, argmin
l
‖xi − µl‖2)

)
I update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)
This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I, with σ2 → 0.

Then the responsibilities become binary

rim → δ(m, argmin
l
‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

I assign each point to its closest mean
(

set rim = δ(m, argmin
l
‖xi − µl‖2)

)
I update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)
This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I, with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l
‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

I assign each point to its closest mean
(

set rim = δ(m, argmin
l
‖xi − µl‖2)

)
I update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)
This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I, with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l
‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

I assign each point to its closest mean
(

set rim = δ(m, argmin
l
‖xi − µl‖2)

)
I update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)

This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

The K-means Algorithm

The K-means algorithm is a limiting case of the mixture of Gaussians (c.f. PCA and Factor
Analysis).

Take πm = 1/k and Σm = σ2I, with σ2 → 0. Then the responsibilities become binary

rim → δ(m, argmin
l
‖xi − µl‖2)

with 1 for the component with the closest mean and 0 for all other components. We can then
solve directly for the means by setting the gradient to 0.

The k-means algorithm iterates these two steps:

I assign each point to its closest mean
(

set rim = δ(m, argmin
l
‖xi − µl‖2)

)
I update the means to the average of their assigned points

(
set µm =

∑
i rimxi∑

i rim

)
This usually converges within a few iterations, although the fixed point depends on the initial
values chosen for µm. The algorithm has no learning rate, but the assumptions are quite
limiting.

A preview of the EM algorithm

We wrote the k-means algorithm in terms of binary responsibilities. Suppose, instead, we
used the fractional responsibilities from the full (non-limiting) MoG, but still neglected the
dependence of the responsibilities on the parameters. We could then solve for both µm and
Σm.

The EM algorithm for MoGs iterates these two steps:
I Evaluate the responsibilities for each point given the current parameters.
I Optimise the parameters assuming the responsibilities stay fixed:

µm =

∑
i rimxi∑

i rim
and Σm =

∑
i rim(xi − µm)(xi − µm)T∑

i rim

Although this appears ad hoc, we will see (later) that it is a special case of a general
algorithm, and is actually guaranteed to increase the likelihood at each iteration.

Issues

There are several problems with these algorithms:
I slow convergence for the gradient based method
I gradient based method may develop invalid covariance matrices
I local minima; the end configuration may depend on the starting state
I how do you adjust k? Using the likelihood alone is no good.
I singularities; components with a single data point will have their covariance going to

zero and the likelihood will tend to infinity.

We will attempt to address many of these as the course goes on.

	Probabilistic & Unsupervised Learning[6ex] Latent Variable Models
	Exponential family models
	Latent variable models
	Latent variable models
	Latent variables and Gaussians
	Probabilistic Principal Components Analysis (PPCA)
	PPCA likelihood
	The 0 limit
	Principal Components Analysis
	Eigendecomposition of a covariance matrix
	PCA and eigenvectors
	PCA subspace
	Example of PCA: Eigenfaces
	Example of PCA: Genetic variation within Europe
	Example of PCA: Genetic variation within Europe
	Equivalent definitions of PCA
	Another view of PCA: Mutual information
	Linear autoencoders: From supervised learning to PCA
	ML learning for PPCA
	PPCA latents
	PPCA latents
	Factor Analysis
	Factor Analysis (cont.)
	Factor Analysis projections
	Gradient methods for learning FA
	FA vs PCA
	Canonical Correlations Analysis
	Limitations of Gaussian, FA and PCA models
	Mixture Distributions
	The Mixture Likelihood
	Approximation with a Mixture of Gaussians (MoG)
	Clustering with a MoG
	Clustering with a MoG
	The MoG likelihood
	Maximum Likelihood for a Mixture Model
	MoG Derivatives
	The K-means Algorithm
	A preview of the EM algorithm
	Issues

