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» Exponential family models: p(x|6) = f(x)eaTT(x)/Z(O)
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» Concave function.
» Maximum may be closed-form.
» If not, numerical optimisation is still generally straightforward.
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» Usually no closed form optimum.
» Often multiple local maxima.
» Direct numerical optimisation may be possible but infrequently easy.



Example: mixture of Gaussians

Data: X = {X1 e XN}

Latent process:
iid .
s; ~ Disc[m]

Component distributions:
Xi | (si=m) ~ Pnln] =N (tm, Zm)

Marginal distribution:

k
P(X,‘) = Zﬂ'mpm(x Om
m=1

Log-likelihood:

(xi—l"m)Tzr;1 (xi—pm)

({p} (En}, w){)ogz e
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The joint-data likelhood

» For many models, maximisation might be straightforward if y were not latent, and we
could just maximise the joint-data likelihood:

€(6x,6y) Zcﬁ(ex,yn ) Tx(%0)+6, ZTy(vn ZIogZX(¢(0x,yn))—Nlogzy(0y)

» Conversely, if we knew 6, we could compute (the posterior over) the values of y.

» Idea: update @ and (the distribution on) y in alternation, converging to a self-consistent
answer.

» Will this yield the right answer?

> Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.
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The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood. It starts from arbitrary values of the
parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

» Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. MoGs).

» Decomposes difficult problems into series of tractable steps.
» No learning rate.

» Framework lends itself to principled approximations.

» How does it work?
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One view: EM iteratively refines a lower bound on the log-likelihood.
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In general:
Fora; >0,> a;=1(and {x; > 0}): For probability measure « and concave f
log (Za;xf) > Zai log(x;) f(Eaq [X]) > Ea [f(X)]

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of c.
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Observed data X = {x;}; Latent variables ) = {y;}; Parameters 6 = {6, 6, }.

Log-likelihood:
£(0) = log P(X]0) = log /dy P(Y, X|0)

By Jensen, any distribution, g()’), over the latent variables generates a lower bound:
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Now,
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where H|[q] is the entropy of g(}).

So:
F(q,0) = (log P(¥, X0)) 4y + HIq]
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The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q,0) = (log P(Y, X10)) oy + Hlal,

EM alternates between:
» E step: optimize F(q, 6) wrt distribution over hidden variables holding parameters fixed:

g"(¥) = argmax F(q(),0""").
a(y)

> M step: maximize F(q, 0) wrt parameters holding hidden distribution fixed:

0" .= argmax F(¢"()),0) = argmax (log P(, X10)) g0
0 0

The second equality comes from the fact H [q(k)(y)} does not depend directly on 6.
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a(y) d
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The E Step

The free energy can be re-written

F(q,0) :/q(y) IOQ% ay
og P, 0)P(10)
/ q(y) >
= / q(Y)log P(X|0) dY + / a(y) IOQ% ay
= £(9) — KL[g(V)[IP(V|X,0)]

The second term is the Kullback-Leibler divergence.

This means that, for fixed 8, F is bounded above by ¢, and achieves that bound when
KL[g(V)[|P(Y|X,0)] = 0.

But KL[q||p] is zero if and only if g = p (see appendix.)
So, the E step sets

qd (V) = P(Y|x, 0% ")

and, after an E step, the free energy equals the likelihood.



Coordinate Ascent in 7 (Demo)

To visualise, we consider a one parameter / one latent mixture:

s ~ Bernoulli[~]
x|s =0~ N[-1,1] x|s=1~N[1,1].

Single data point x; = .3.
q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].
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EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

(0% - F q(k)’g(k”) < F q(k)’g(k) < (oW ,
( ) E step ( ) M step ( )Jen_sen @)

» The E step brings the free energy to the likelihood.
» The M-step maximises the free energy wrt 6.
» F < { by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that 0% £ 0%~ iff F increases, then the overall EM iteration
will step to a new value of 8 iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).



EM Summary

>

An iterative algorithm that finds (local) maxima of the likelihood of a latent variable
model.

£(0) = log P(X|0) = Iog/dy P(X|Y,0)P(Y]0)

Increases a variational lower bound on the likelihood by coordinate ascent.
F(q,0) = (log P(¥, X0)) 43 + Hla] = £(6) — KL[q(V)[|P(Y]X)] < £(6)
E step:
q(k)(y) := argmax ]:(q(y)79(*<71)) _ P(yl;a@(kfﬂ)
a(y)
M step:

0" = argmax F(¢"()),0) = argmax (log P(, X10)) g0
0 0

After E-step F(q,0) = £(0) = maximum of free-energy is maximum of likelihood.



Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

0 0

90 (log P(X>y|9))q(k)(y)[:p(yw,g(kfﬁ))] =90 log P(X16)

glk—1) glk—1)

So E-step (inference) can be used to construct other gradient-based optimisation schemes

(e.g. “Expectaton Conjugate Gradient”, Salakhutdinov et al. ICML 2003).

Partial E steps: We can also just increase F wrt to some of the gs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a
subset of the data points or as the data arrives, respectively. One might also update the
posterior over a subset of the hidden variables, while holding others fixed...



EM for MoGs

» Evaluate responsibilities

_ Pa(X)mm

'm= &S—f65 7o

> P (X) Ty
» Update parameters
Z limXi
. Z lim

- s Zifm( = pm) (% = pm)
> fim

.o Z,‘rim
N

- Tm —



The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

k

p(x|6) = Zp(s—mw x|s:m,9)ocza—mexp{ ! ( — pum)?},

m=1

where @ is the collection of parameters: means y,, variances o, and mixing proportions
wm = p(s = m|0).

The hidden variable s; indicates which component generated observation x;.
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The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):
= (log p(x; 516)) o) = >, a(s) log[p(s]6) p(x|s, )]

= Zr,m[logwm—logam—

ism

1 2
E(Xi — ftm) ]

Optimum is found by setting the partial derivatives of E to zero:

Z limXi
—E = g ri =0 = — ,
8Mm Im fm = Z Fim

1 (i) 2 2 fm(% — pm)®
aamE an[ + =0 = on= >l ’

87['E Zlm §£+A—O = TTm= — Z”im,

m

where \ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.



EM for Factor Analysis

The model for x:

p(x|0) = /p(v|9)p(XIv, 0)dy = N(0, A\ + W)
@ @ oo o Model parameters: 6 = {A, W}.

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gn(yn) = p(Yn|Xn, 0t).

M step: Find the 6;41 that maximises F(q, 6):

Fla.0) = > / an(Yn) [log p(yn|0) + log p(Xa|Yn, 0) — log an(yn)] dyn

S~ [ @(y)loapysl6) + log p(xalyn,6)] ay, + o



The E step for Factor Analysis

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gn(yn) = p(Yn|Xn, 0) = p(¥n, Xn|6)/p(Xn|0)

Tactic: write p(yn, Xa|0), consider x, to be fixed. What is this as a function of y,?

P(Yn)P(Xn|Yn)
_kK 1 _1 1 _
(2m) z exp{—EyZyn} [2mW| ; exp{—é(x,7 — /\y,,)T\IJ ‘(x,, — Ayn)}

p(y"7 x”)

1 _
¢ x exp{— 5 [yn¥n + (Xo — AYn) W (X0 — Ayn)]}

¢ x exp{—%[y;(l + AU Ay, — 2y ATV x,]}
1 1o _ _
= o xexp{—3lyaT Yo — 20T pn+ pnT o]}

SoY =(I+A VA" =/~ BAand p, = TATV %, = Bx,. Where 3 = TATW .
Note that ., is a linear function of x, and X does not depend on X.
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M step: Find 6:+1 by maximising F = Z (log p(yn|0) + log p(Xn|Yn, 0)) 4, (y.y T+ C
n

log p(yn|0) + log p(Xa|yn, )
1 1 1 _
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The M step for Factor Analysis

M step: Find 6:+1 by maximising F = Z (log p(yn|0) + log p(Xn|Yn, 0)) 4, (y.y T+ C
n

log p(yn|0) + log p(Xa|yn, )
1 1 1 _
== ¥n¥n = 5100 |V] = 5 (% — Ayn) V(0 — Ayi)
1 _ _
—c¢— %Iog V-5 [xﬁw*‘xn — 26,V Ay, + YAV '/\vn]
— ¢~ tioglw| - 1 [xlw*‘xn 2V Ay, + T [/\TW"/\vnvIH
2 2

Taking expectations wrt ga(yn):

—c— % log |W| — % [xI\lﬂxn 2V A, T [/\Tw*‘/\(unuﬁ + Z)H

Note that we don’t need to know everything about g(y,), just the moments (y,) and <ynyﬁ>.
These are the expected sufficient statistics.
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The M step for Factor Analysis (cont.)
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The M step for Factor Analysis (cont.)

F=c - g log || — % 3 [xl\lﬂxn —2X0W T A + T [/\Tw*‘/\(unuﬁ + ):)H

n

Taking derivatives wrt A and W™, using 27481 — AT and 2214 — A= T

oF —1 T —1 T\
=Y zn:xnun—w /\(NZ-i—zn:unu,,)_O
—1
- (z xnuz> (Nz+ > m)
n n



The M step for Factor Analysis (cont.)

F=c - g log || — % 3 [xl\lﬂxn —2X0W T A + T [/\Tw*‘/\(unuﬁ + ):)H

n

Taking derivatives wrt A and W™, using 27481 — AT and 2214 — A= T
oF _ _
=Y " Xopn — WA (Nz+zunuﬁ) =0
n n
—1
= A= (Z XnN:) (NZ+ > MNZ)
n n

OF _ N
ov-1 T 2

1
vy [xan — ApaXh — Xopth AT A(popal + ):)/\T}
n

Note: we should actually only take derivatives w.r.t. W44 since W is diagonal.



The M step for Factor Analysis (cont.)

F=c - g log || — % 3 [xl\lﬂxn —2X0W T A + T [/\Tw*‘/\(unuﬁ + ):)H

n

Taking derivatives wrt A and W™, using 27481 — AT and 2214 — A= T

OF —1 T —1 T\
=Y zn:xnp,n—\l! /\(NZ-i—;u,,u,,)_O

_ 1 T T T
V= Z [xnxn — AnXh — Xopth AT 4+ A(popeh + A }

Note: we should actually only take derivatives w.r.t. W44 since W is diagonal.



The M step for Factor Analysis (cont.)

F=c - g log || — % 3 [xl\lﬂxn —2X0W T A + T [/\Tw*‘/\(unuﬁ + ):)H

n

Taking derivatives wrt A and W™, using

8-7:_ —1 T —1 T
=Y zn:xnp,n—\l! A NZ+ZH:NHM,, =0

aTr[AB] AT and BI?AM\ —A T

o l T _ T T
= V= Z [xnxn AtnXl — Xttt AT + Aopel + E)A }
Py 1
V= /\z/\T+N > (%0 = Apta) (Xn — Apen)" (squared residuals)

Note: we should actually only take derivatives w.r.t. W44 since W is diagonal.



The M step for Factor Analysis (cont.)

F=c - g log || — % 3 [xl\lﬂxn —2X0W T A + T [/\Tw*‘/\(unuﬁ + ):)H

n

Taking derivatives wrt A and W™, using

8]:_ —1 T —1 T
=Y zn:xnp,n—\l! A N>:+zn:un,un =0

aTr[AB] AT and BI?AM\ —A T

o l T _ T T
= V= Z [xnxn AtnXl — Xttt AT + Aopel + E)A }
Py 1
V= /\z/\T+N > (%0 = Apta) (Xn — Apen)" (squared residuals)

Note: we should actually only take derivatives w.r.t. W44 since W is diagonal.
As ~ — 0 these become the equations for ML linear regression



Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|0) = Zm N (e, NN + W)

where 7 is the mixing proportion for FA k, p is its centre, Ak is its “factor loading matrix”,
and ¥ is a common sensor noise model. 8 = {{mx, ptx, Ak pk=1..k, V}
We can think of this model as having two sets of hidden latent variables:

» A discrete indicator variable s, € {1,... K}
» For each factor analyzer, a continous factor vector y, x € R

p(K0) = 3" p(s0l6) / p(Y |0, 0)p(Xoly, 0, 0) dy

sp=1
As before, an EM algorithm can be derived for this model:
E step: We need moments of p(Yn, Sn|Xn, 8), specifically: (ds,=m), {(ds,=mYn) and
<5sn:mynyz>-

M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf



EM for exponential families

EM is often applied to models whose joint over z = (y, x) has exponential-family form:

p(2|0) = f(2) exp{0'T(2)}/Z(0)
(with Z(0) = [ f(z) exp{6"T(z) }dz) but whose marginal p(x) & ExpFam.
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EM for exponential families
EM is often applied to models whose joint over z = (y, x) has exponential-family form:
p(2|0) = f(z) exp{0T(2)}/2(0)

(with Z(0) = [ f(z) exp{6"T(z) }dz) but whose marginal p(x) & ExpFam.
The free energy dependence on 0 is given by:

F(q,0) = /Q(V) log p(y, x|0)dy — H[q]

= /q(y) [67T(z) — log Z(6)] dy + const wrt 6
= 0" (T(2)) ) — l0g Z(0) + const wrt

So, in the E step all we need to compute are the expected sufficient statistics under g.
We also have:

889 log Z(6) = %%2(9) - (1 5 06 / f(2) exp{07T(2)}
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or

Thus, the M step solves: 50 = (T(2)) gy — (T(2)[0) =0
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Proof of the Matrix Inversion Lemma

(A+XBX) '=A" —AT'X(B T+ XATTX) XA
Need to prove:
(A*‘ —AT'X(BT + xTA*‘x)*‘XTA*‘) (A+XxBX") =1
Expand:
I+ A XBXT— A ' X(B' 4+ XA X)T'XT— AT X(BTT+ XTATX) T XTAT XBXT
Regroup:
— I+ A X (BxT — BT+ XATX) X - (B + XTA"X)"XTA"XBXT)
—I+ATX (BXT B+ XATX) B BX — (B + XTA’1X)’1XTA’1XBXT)
—I+AX (BXT — BT+ XATX) (B + XTA*‘X)BXT)

=I1+A"'X(BX"—BX") =1



KL[q(x)|lp(x)] > 0, with equality iff Vx : p(x) = q(x)
First consider discrete distributions; the Kullback-Liebler divergence is:

KL{gllp] = > gilog g
To minimize wrt distribution g we need a Lagrange multiplier to enforce normalisation:
def i
E=KL[gllp] + A(1-> ) => aglog % +A(1->a)

Find conditions for stationarity

gs_ = logg —logpi+1—A=0= g =piexp(A—1)

OE = Qi = pi-

= 1—Zq,:0:>§i:qf:1

Check sign of curvature (Hessian):

8%E 1 8%E
= — > s _— = 07
0gi9q g 9qi0q;

SO unique stationary point q; = p; is indeed a minimum. Easily verified that at that minimum,

KL[qllp] = KL[pl|p] = 0.
A similar proof holds for continuous densities, using functional derivatives.
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Fixed Points of EM are Stationary Points in /

Let a fixed point of EM occur with parameter 6*. Then:

1o}
%Oog PV, X | 0)) py|a,0%) .

—0
Now,  ¢(6) = log P(X[0) = (log P(X0)) p(y)x -

_ P(Y, X|0)

= <'°g PO, e)> o)

= (log P(Y, X|9)> PY|X,0%) — (log P(YV| X, 9)) PV X,6%)

S0, d d
5(9) a0 (log P(V, X|0)>P(y|X 0%) — d9<|09 P(Y|X, 9)) P(V|X,0%)

The second term is 0 at 6 if the derivative exists (minimum of KL[-]|-]), and thus:

d d
3510 = 5509 PO X0ayipm)| =0

0*

So, EM converges to a stationary point of £(6).
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Let 6™ now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt 8 again we find

d2

a?
WK(G) 902 (log P(V, X10)) (3| x,0+) —

d@g <|09 PY|X, 0)>P(y|x 0*)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

6* is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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