Probabilistic & Unsupervised Learning

Beyond linear-Gaussian and Mixture models

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science
University College London

Term 1, Autumn 2014

Tractable Models

- Factor analysis, principle components analysis, probabilistic PCA.
- Linear regression, Gaussian processes.
- Mixture of Gaussians, mixture of experts.
- Hidden Markov models, linear-Gaussian state space models.

Models consisting of various combinations of:
- Linear Gaussian,
- Discrete variables,
- Chains and trees (or junction trees),

Expanding Our Horizons

Although these models can be powerful, they are undoubtedly still restrictive. There is a need to go beyond the confines of these structures.

In this half of the course (and today) we will study:
- hierarchical models,
- distributed models,
- nonlinear models,
- non-Gaussian models.

and various combinations of these.

Whilst sometimes tractable (particularly in corner cases), these models will most often require approximate inference.
Why We Need ... Nonlinear/Non-Gaussian Models

Much of the world is neither linear nor Gaussian

... and most interesting structure we would like to learn about is not either.

Why We Need ... Hierarchical (Deep) Models

Many generative processes can be naturally described at different levels of detail.

Biology seems to have developed hierarchical representations.

Why We Need ... Distributed Models

Consider a hidden Markov model. To capture N bits of information about the history of the sequence, an HMM requires $K = 2^N$ states.

In a distributed representation each data point is represented by a vector of (discrete or continuous) attributes. Some attributes might be latent.

- For example, consider a model used to predict election outcome.
- One might simply assign each voter to one of 4 classes: Labour, Tory, Lib–Dem and Undecided. This is not a distributed representation — each person is described by a single 4-valued discrete variable.
- A better approach might be to model voters using a group of attributes, e.g.: (Tory, Single, Black, Female, 34 yrs, Urban, Liberal, £35k p.a.).
- These attributes resemble factors, but may be discrete (and non-Gaussian), and may outnumber the observed dimensions.

Such distributed representations can be exponentially more efficient than clustering.

A Generative Model for Generative Models

Blind Source Separation

Sometimes called the cocktail party problem.

- Given signals from one or more receivers that mix signals from one or more sources, recover the timeseries of the source signals.
- Independent components analysis: assumes that sources are independent and non-Gaussian.

Independent Components Analysis

These distributions are generated by linearly combining (or mixing) two non-Gaussian sources.

- The ICA graphical model is identical to factor analysis:
 \[x_d = \sum_{k=1}^{K} \Lambda_{dk} y_k + \epsilon_d \]
 with \(y_k \sim P_y \) non-Gaussian.

Differences:
- Well-posed even with \(K \geq D \) (e.g., \(K = D = 2 \) above).
- With non-zero noise, MAP inference is non-linear, and the full posterior is non-Gaussian.
- This makes making exact inference and learning difficult for most \(P_y \).

Square, Noiseless Causal ICA

- The special case of \(K = D \), and zero observation noise has been studied extensively (standard infomax ICA, c.f. PCA): \(x = \Lambda y \) which implies \(y = W x \) where \(W = \Lambda^{-1} \)

 where \(y \) are the independent components (factors), \(x \) are the observations, and \(W \) is the unmixing matrix.

- The likelihood can be obtained by transforming the density of \(y \) to that of \(x \). If \(F : y \mapsto x \) is a differentiable bijection, and if \(dy \) is a small neighbourhood around \(y \), then

 \[P_x(x) dx = P_y(y) dy = P_y(F^{-1}(x)) \left| \frac{dy}{dx} \right| dx = P_y(F^{-1}(x)) \left| \nabla F^{-1} \right| dx \]

- This gives (for parameter \(W \)):

 \[P(x|W) = |W| \prod_k P_y(Wx_k) \]

 where \(p_y \) is marginal probability distribution of factors.
Infomax ICA

Consider a feedforward model:

\[y_i = W_i x; \quad z_i = f_i(y) \]

with a monotonic squashing function \(f(\infty) = 0, f(-\infty) = 1 \).

Infomax finds filtering weights \(W \) maximizing the information carried by \(z \) about \(x \):

\[\text{argmax}_W I(x; z) = \text{argmax}_W H(z) - H(z|x) = \text{argmax}_W H(z) \]

Thus we just have to maximize entropy of \(z \): make it as uniform as possible on \([0, 1]\) (note squashing function).

Infomax ICA ⇔ square noiseless causal ICA.

Another view: redundancy reduction in the representation \(z \) of the data \(x \).

\[\text{argmax}_W H(z) = \text{argmax}_W \sum_i H(z_i) - I(z_1, \ldots, z_D) \]

Learning in ICA

Log likelihood of data:

\[\log P(x) = \log |W| + \sum_i \log P_i(W_i x) \]

Learning by gradient ascent:

\[\Delta W \propto \nabla W = W^{-T} + g(y) x^T \]

\[g(y) = \frac{\partial \log P_i(y)}{\partial y} \]

Better approach: natural gradient

\[\Delta W \propto \nabla W(W^T W) = W + g(y)y^T W \]

(see MacKay 1996).

Note: we can’t use EM in the square noiseless causal ICA model. Why?

Kurtosis

The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is:

\[K = \frac{E((x - \mu)^4)}{E((x - \mu)^2)^2} - 3, \text{ where } \mu = E(x) \text{ is the mean of } x. \]

Gaussian distributions have zero kurtosis.

ICA and BSS

Applications:

- Separating auditory sources
- Analysis of EEG data
- Analysis of functional MRI data
- Natural scene analysis
- ...

Extensions:

- Non-zero output noise – approximate posteriors and learning.
- Undercomplete \((K < D)\) or overcomplete \((K > D)\).
- Learning prior distributions (on \(y \)).
- Dynamical hidden models (on \(y \)).
- Learning number of sources.
- Time-varying mixing matrix.
- Nonparametric, kernel ICA.
- ...

Kurtosis

The kurtosis (or excess kurtosis) measures how “peaky” or “heavy-tailed” a distribution is:

\[K = \frac{E((x - \mu)^4)}{E((x - \mu)^2)^2} - 3, \text{ where } \mu = E(x) \text{ is the mean of } x. \]

Gaussian distributions have zero kurtosis.

Some ICA algorithms are essentially kurtosis pursuit approaches. Possibly fewer assumptions about generating distributions.
ICA solution to blind source separation assumes no dependence across time; still works fine much of the time.

Many other algorithms: DCA, SOBI, JADE, ...
Learning (online EKF)

The EKF (or related methods) can also be used to implement online parameter learning in (non)linear latent state-space systems:

Augment state vector to include the model parameters

\[\tilde{y}_t = \begin{bmatrix} y_t \\ \text{vec}(A) \\ \text{vec}(C) \end{bmatrix}, \quad \tilde{y}_{t+1} = f(\tilde{y}_t) + \text{noise} \]

Use EKF to compute online \(E[\tilde{y}_t|x_t, \ldots, x_j] \) and \(\text{Cov}(\tilde{y}_t|x_t, \ldots, x_j) \). These now include parameter estimates.

- Pseudo-Bayesian approach: gives distributions over parameters.
- Handle nonstationarity by assuming innovations noise in \(A, C \) at each time step.
- Not clear that it works for \(Q \) and \(R \) (e.g. covariance constraints?).
- May be faster than EM/gradient approaches.

Sometimes called the “joint-EKF” approach.

Learning in Boltzmann Machines

\[\log P(s^V|w, b) = \sum_i w_i s_i - \sum_i b_i s_i - \log Z \]

with \(Z = \sum_s e^{\sum_i w_i s_i - \sum_i b_i s_i} \).

Generalised (gradient M-step) EM requires parameter step

\[\Delta W_i = \frac{\partial}{\partial W_i} \left(\log P(s^V|w, b) \right) \bigg|_{P(s^V|w, b)} \]

Write \(\langle \cdot \rangle_c \) (clamped) for expectations under \(P(s|s^V) \) (with \(P(s^V|s) = 1 \)). Then

\[\nabla W_i = \frac{\partial}{\partial w_i} \left[\sum_j w_j \langle s_j \rangle_c - \sum_i b_i \langle s_i \rangle_c - \log Z \right] \]

\[= \langle s_i \rangle_c - \frac{\partial}{\partial w_i} \log Z \]

\[= \langle s_i \rangle_c - \frac{1}{Z} \frac{\partial}{\partial w_i} \sum_s e^{\sum_j w_j s_j - \sum_i b_i s_i} \]

\[= \langle s_i \rangle_c - \frac{1}{Z} e^{\sum_j w_j s_j - \sum_i b_i s_i} \sum_i b_i \]

\[= \langle s_i \rangle_c - \sum_s P(s|w, b)s_i = \langle s_i \rangle_c - \langle s_i \rangle_u \]

with \(\langle \cdot \rangle_u \) (unclamped) an expectation under the current joint distribution.

Boltzmann Machines

Undirected graphical model (i.e. a Markov network) over a vector of binary variables \(s_i \in \{0, 1\} \). Some variables may be hidden, some may be visible (observed).

\[P(s|w, b) = \frac{1}{Z} \exp \left\{ \sum_i w_i s_i - \sum_i b_i s_i \right\} \]

where \(Z \) is the normalization constant (partition function).

Learning algorithm: a gradient version of EM

- E step involves computing averages w.r.t. \(P(s^V|s^Y, W, b) \) (“clamped phase”). This could be done either exactly or (more usually) approximately using Gibbs sampling or loopy BP.
- The M step requires gradients w.r.t. \(Z \), which can be computed by averages w.r.t. \(P(s|W, b) \) (“unclamped phase”).

\[\nabla W_i = \langle s_i \rangle_c - \langle s_i \rangle_u \]

Sigmoid Belief Networks

Directed graphical model (i.e. a Bayesian network) over a vector of binary variables \(s_i \in \{0, 1\} \).

\[P(s|w, b) = \prod_i P(s_i|\{s_j\}_{j<i}, W, b) \]

\[P(s_i = 1|\{s_j\}_{j<i}, W, b) = \frac{1}{1 + \exp\{-\sum_{j<i} w_j s_j - b_i\}} \]

- parents most often grouped into layers
- logistic function of linear combination of parents
- “generative multilayer perceptron” (“neural network”)

Learning algorithm: a gradient version of EM

- E step involves computing averages w.r.t. \(P(s_i|s_j, W, b) \). This could be done either exactly or approximately using Gibbs sampling or mean field approximations. Or using a parallel ‘recognition network’ (the Helmholtz machine).
- Unlike Boltzmann machines, there is no partition function, so no need for an unclamped phase in the M step.
Factorial Hidden Markov Models

- Hidden Markov models with many state variables (i.e. distributed state representation).
- Each state variable evolves independently.
- The state can capture many bits of information about the sequence (linear in the number of state variables).
- E step is typically intractable (due to explaining away in latent states).

Dynamic Bayesian Networks

- Distributed HMM with structured dependencies amongst latent states.

Topic Modelling

Topic modelling: given a corpus of documents, find the “topics” they discuss.

Example: consider abstracts of papers PNAS.

Global climate change and mammalian species diversity in U.S. national parks
National parks and bioreseves are key conservation tools used to protect species and their habitats within the confines of fixed political boundaries. This inflexibility may be their “Achilles’ heel” as conservation tools in the face of emerging global-scale environmental problems such as climate change. Global climate change, brought about by rising levels of greenhouse gases, threatens to alter the geographic distribution of many habitats and their component species....

The influence of large-scale wind power on global climate
Large-scale use of wind power can alter local and global climate by extracting kinetic energy and altering turbulent transport in the atmospheric boundary layer. We report climate-model simulations that address the possible climatic impacts of wind power at regional to global scales by using two general circulation models and several parameterizations of the interaction of wind turbines with the boundary layer....

Twentieth century climate change: Evidence from small glaciers
The relation between changes in modern glaciers, not including the ice sheets of Greenland and Antarctica, and their climatic environment is investigated to shed light on paleoglacier evidence of past climate change and for projecting effects of future climate warming on cold regions of the world. Loss of glacier volume has been more or less continuous since the 19th century, but it is not a simple adjustment to the end of an ‘anomalous’ Little Ice Age....
Recap: Beta Distributions
Recall the Bayesian coin toss example.

\[P(H|q) = q \quad P(T|q) = 1 - q \]

The probability of a sequence of coin tosses is:

\[P(HHTT \cdots HT|q) = q^{\text{heads}}(1 - q)^{\text{tails}} \]

A conjugate prior for \(q \) is the Beta distribution:

\[P(q) = \frac{\Gamma(a + b)}{\Gamma(a)\Gamma(b)} q^{a-1}(1 - q)^{b-1} \quad a, b \geq 0 \]

Latent Dirichlet Allocation
Each document is a sequence of words, we model it using a mixture model by ignoring the sequential nature—“bag-of-words” assumption.

- Draw topic distributions from a prior
 \(\phi_k \sim \text{Dir}(\beta, \ldots, \beta) \)
- For each document:
 - draw a distribution over topics
 \(\theta_d \sim \text{Dir}(\alpha, \ldots, \alpha) \)
 - generate words iid:
 - draw topic from a document-specific dist:
 \(z_{dw} \sim \text{Discrete}(\theta_d) \)
 - draw word from a topic-specific dist:
 \(x_{dw} \sim \text{Discrete}(\phi_{zw}) \)

Multiple mixtures of discrete distributions, sharing the same set of components (topics).

Dirichlet Distributions
Imagine a Bayesian dice throwing example.

\[P(1|q) = q_1 \quad P(2|q) = q_2 \quad P(3|q) = q_3 \quad P(4|q) = q_4 \quad P(5|q) = q_5 \quad P(6|q) = q_6 \]

with \(q_i \geq 0, \sum_i q_i = 1 \). The probability of a sequence of dice throws is:

\[P(34156 \cdots |q) = \prod_{i=1}^{6} q_i^{\text{face } i} \]

A conjugate prior for \(q \) is the Dirichlet distribution:

\[P(q) = \frac{\Gamma(\sum_i a_i)}{\prod_i \Gamma(a_i)} \prod_i q_i^{a_i-1} \quad q_i \geq 0, \sum_i q_i = 1 \quad a_i \geq 0 \]

Latent Dirichlet Allocation as Matrix Decomposition
Let \(N_{dw} \) be the number of times word \(w \) appears in document \(d \), and \(P_{dw} \) is the probability of word \(w \) appearing in document \(d \).

\[p(N|P) = \prod_{dw} P_{dw}^{N_{dw}} \quad \text{likelihood term} \]

\[P_{dw} = \sum_k p(\text{pick topic } k) p(\text{pick word } w|k) = \sum_{k=1}^{K} \theta_{dk} \phi_{kw} \]

This decomposition is similar to PCA and factor analysis, but not Gaussian. Related to non-negative matrix factorisation (NMF).
Latent Dirichlet Allocation

- Exact inference in latent Dirichlet allocation is intractable, and typically either variational or Markov chain Monte Carlo approximations are deployed.
- Latent Dirichlet allocation is an example of a mixed membership model from statistics.
- Latent Dirichlet allocation has also been applied to computer vision, social network modelling, natural language processing...
- Generalizations:
 - Relax the bag-of-words assumption (e.g. a Markov model).
 - Model changes in topics through time.
 - Model correlations among occurrences of topics.
 - Model authors, recipients, multiple corpora.
 - Cross modal interactions (images and tags).
 - Nonparametric generalisations.

Nonlinear Dimensionality Reduction

We can see matrix factorisation methods as performing linear dimensionality reduction.

There are many ways to generalise PCA and FA to deal with data which lie on a nonlinear manifold:

- Nonlinear autoencoders
- Generative topographic mappings (GTM) and Kohonen self-organising maps (SOM)
- Multi-dimensional scaling (MDS)
- Kernel PCA (based on MDS representation)
- Isomap
- Locally linear embedding (LLE)
- Stochastic Neighbour Embedding
- Gaussian Process Latent Variable Models (GPLVM)

Another view of PCA: matching inner products

We have viewed PCA as providing a decomposition of the covariance or scatter matrix S. We obtain similar results if we approximate the Gram matrix:

$$
\minimise \quad \mathcal{E} = \sum_{ij} (G_{ij} - y_i \cdot y_j)^2
$$

for $y \in \mathbb{R}^k$.

That is, look for a k-dimensional embedding in which dot products (which depend on lengths, and angles) are preserved as well as possible.

We will see that this is also equivalent to preserving distances between points.

Another view of PCA: matching inner products

Consider the eigendecomposition of G:

$$
G = U \Lambda U^T \quad \text{arranged so} \quad \lambda_1 \geq \cdots \geq \lambda_m \geq 0
$$

The best rank-k approximation $G \approx Y^T Y$ is given by:

$$
Y^T = [U]_{1:m, 1:k} [\Lambda^{1/2}]_{1:k, 1:k};
$$

$$
= [U \Lambda^{1/2}]_{1:m, 1:k};
$$

$$
Y = [\Lambda^{1/2} U]_{1:k, 1:m}
$$

The same operations can be performed on the kernel Gram matrix \Rightarrow Kernel PCA.
Multidimensional Scaling

Suppose all we were given were distances or symmetric “dissimilarities” \(\Delta_{ij} \).

\[
\Delta = \begin{bmatrix}
0 & \Delta_{12} & \Delta_{13} & \Delta_{14} \\
\Delta_{12} & 0 & \Delta_{23} & \Delta_{24} \\
\Delta_{13} & \Delta_{23} & 0 & \Delta_{34} \\
\Delta_{14} & \Delta_{24} & \Delta_{34} & 0
\end{bmatrix}
\]

Goal: Find vectors \(y_i \) such that \(\| y_i - y_j \| \approx \Delta_{ij} \).

This is called Multidimensional Scaling (MDS).

Metric MDS

Assume the dissimilarities represent Euclidean distances between points in some high-D space.

\[
\Delta = \| x_i - x_j \| \text{ with } \sum_i x_i = 0.
\]

We have:

\[
\sum_k \Delta_{ik}^2 = m \| x_i \|^2 + \sum_k \| x_k \|^2 - 0
\]

\[
\sum_k \Delta_{kj}^2 = \sum_k \| x_k \|^2 - m \| x_j \|^2 + 0
\]

\[
\sum_{kl} \Delta_{kl}^2 = 2m \sum_k \| x_k \|^2
\]

\[
\Rightarrow G_{ij} = x_i \cdot x_j = \frac{1}{2} \left(\frac{1}{m} \sum_k (\Delta_{ik}^2 + \Delta_{kj}^2) - \frac{1}{m^2} \sum_k \Delta_{ij}^2 \right)
\]

Metric MDS and eigenvalues

We will actually minimize the error in the dot products:

\[
\mathcal{E} = \sum_{ij} (G_{ij} - y_i \cdot y_j)^2
\]

As in PCA, this is given by the top slice of the eigenvector matrix.

Interpreting MDS

\[
G = \frac{1}{2} \left(\frac{1}{m} (\Delta^2 1 + 1\Delta^2) - \Delta^2 - \frac{1}{m^2} 1\Delta^2 1 \right)
\]

\[
G = U\Lambda U^T; \quad Y = [\Lambda^{1/2} U^T]_{1:k,1:m}
\]

(1 is a matrix of ones.)

- **Eigenvectors.** Ordered, scaled and truncated to yield low-dimensional embedded points \(y_j \).
- **Eigenvalues.** Measure how much each dimension contributes to dot products.
- **Estimated dimensionality.** Number of significant (nonnegative – negative possible if \(\Delta_{ij} \) are not metric) eigenvalues.
MDS and PCA

Dual matrices:

\[
S = \frac{1}{m}XX^T \quad \text{scatter matrix} \quad (n \times n)
\]
\[
G = X^TX \quad \text{Gram matrix} \quad (m \times m)
\]

- Same eigenvalues up to a constant factor.
- Equivalent on metric data, but MDS can run on non-metric dissimilarities.
- Computational cost is different.
 - PCA: \(O((m + k)n^2)\)
 - MDS: \(O((n + k)m^2)\)

Non-metric MDS

MDS can be generalised to permit a monotonic mapping:

\[
\Delta_i \rightarrow g(\Delta_i),
\]

even if this violates metric rules (like the triangle inequality).

This can introduce a non-linear warping of the manifold.

But

Rank ordering of Euclidean distances is **NOT** preserved in “manifold learning”.

\[
d(A,C) < d(A,B) \\
d(A,C) > d(A,B)
\]

Isomap

Idea: try to trace distance along the manifold. Use geodesic instead of (transformed) Euclidean distances in MDS.

- preserves local structure
- estimates “global” structure
- preserves information (MDS)
Stages of Isomap

1. Identify neighbourhoods around each point (local points, assumed to be local on the manifold). Euclidean distances are preserved within a neighbourhood.
2. For points outside the neighbourhood, estimate distances by hopping between points within neighbourhoods.
3. Embed using MDS.

Step 1: Adjacency graph

First we construct a graph linking each point to its neighbours.
- vertices represent input points
- undirected edges connect neighbours (weight = Euclidean distance)

Forms a discretised approximation to the submanifold, assuming:
- Graph is singly-connected.
- Graph neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r, prior knowledge.

Step 2: Geodesics

Estimate distances by shortest path in graph.

$\Delta_{ij} = \min_{\text{path}(x_i, x_j)} \left\{ \sum_{e \in \text{path}(x_i, x_j)} \delta_e \right\}$

- Standard graph problem. Solved by Dijkstra’s algorithm (and others).
- Better estimates for denser sampling.
- Short cuts very dangerous (“average” path distance?) .

Step 3: Embed

Embed using metric MDS (path distances obey the triangle inequality)
- Eigenvectors of Gram matrix yield low-dimensional embedding.
- Number of significant eigenvalues estimates dimensionality.
Locally Linear Embedding (LLE)

MDS and isomap preserve local and global (estimated, for isomap) distances. PCA preserves local and global structure.

Idea: estimate local (linear) structure of manifold. Preserve this as well as possible.

- preserves local structure (not just distance)
- not explicitly global
- preserves only local information

Stages of LLE:

1. **Select neighbors**
2. **Reconstruct with linear weights**
3. **Map to embedded coordinates**
Step 1: Neighbourhoods

Just as in isomap, we first define neighbouring points for each input. Equivalent to the isomap graph, but we won’t need the graph structure.

Forms a discretised approximation to the submanifold, assuming:

- Graph is singly-connected — although will “work” if not.
- Neighborhoods reflect manifold neighborhoods. No “short cuts”.

Defining the neighbourhood is critical: k-nearest neighbours, inputs within a ball of radius r, prior knowledge.

Step 2: Local weights

Estimate local weights to minimize error

\[
\Phi(W) = \sum_i \|x_i - \sum_{j \in Ne(i)} W_{ij} x_j\|^2
\]

subject to:

\[
\sum_j W_{ij} = 1
\]

- Linear regression – under- or over-constrained depending on $|Ne(i)|$.
- Local structure – optimal weights are invariant to rotation, translation and scaling.
- Short cuts less dangerous (one in many).

Step 3: Embed

Minimise reconstruction errors in y-space under the same weights:

\[
\psi(Y) = \sum_i \|y_i - \sum_{j \in Ne(i)} W_{ij} y_j\|^2
\]

subject to:

\[
\sum_i y_i = 0; \quad \sum_i y_i y_i^T = mI
\]

We can re-write the cost function in quadratic form:

\[
\psi(Y) = \sum_i \Psi_i (Y^T Y)_i \text{ with } \Psi = (I - W)^T (I - W)
\]

Minimise by setting Y to equal the bottom $2 \ldots k + 1$ eigenvectors of Ψ. (Bottom eigenvector always 1 – discard due to centering constraint)

LLE example 1

Surfaces

- $N=1000$ inputs
- $k=8$ nearest neighbors
- $D=3$ dimensions
- $d=2$ dimensions
LLE and Isomap

Many similarities
- Graph-based, spectral methods
- No local optima

Essential differences
- LLE does not estimate dimensionality
- Isomap can be shown to be consistent; no theoretical guarantees for LLE.
- LLE diagonalises a sparse matrix – more efficient than isomap.
- Local weights vs. local & global distances.

Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.
Maximum Variance Unfolding

Unfold neighbourhood graph preserving local structure.

1. Build the neighbourhood graph.
2. Find \(\{ y_i \} \subset \mathbb{R}^2 \) (points in high-D space) with maximum variance, preserving local distances. Let \(K_i = y_i^T y_i \). Then:

 \[
 \max \text{Tr}[K] \quad \text{subject to:} \quad \begin{align*}
 \sum_i K_i &= 0 & \text{(centered)} \\
 K &\succeq 0 & \text{(positive definite)} \\
 K_0 - 2K_1 + K_2 &= \| x_i - x_j \|^2 \text{ for } j \in \text{Ne}(i) & \text{(locally metric)}
 \end{align*}
 \]

 This is a semi-definite program: convex optimisation with unique solution.
3. Embed \(y_i \) in \(\mathbb{R}^k \) using linear methods (PCA/MDS).

SNE variants

- Symmetrise probabilities (\(p_{ij} = p_{ji} \))
 \[
 p_{ij} = \frac{e^{-\frac{1}{2} \| x_i - x_j \|^2 / a^2}}{\sum_{k \neq j} e^{-\frac{1}{2} \| x_i - x_k \|^2 / a^2}} \quad \text{for } j \neq i
 \]
- Heavy-tailed embedding distributions allow embedding to lower dimensions than true manifold:
 \[
 q_i = \frac{(1 + \| y_i - y_i \|^2)^{-1}}{\sum_{k \neq j} (1 + \| y_k - y_j \|^2)^{-1}}
 \]

 Student-t distribution defines "t-SNE".

Focus is on visualisation, rather than manifold discovery.

Stochastic Neighbour Embedding

Softer "probabilistic" notions of neighbourhood and consistency.

High-D "transition" probabilities:

\[
q_{ij} = \begin{cases}
\frac{e^{-\frac{1}{2} \| y_i - y_j \|^2 / \sigma^2}}{\sum_{k \neq j} e^{-\frac{1}{2} \| y_i - y_k \|^2 / \sigma^2}} & \text{for } j \neq i, \\
0 & \text{for } i = j.
\end{cases}
\]

Find \(\{ y_i \} \subset \mathbb{R}^k \) to:

\[
\min \sum_i q_{ij} \log \frac{p_{ij}}{q_{ij}} \quad \text{with } q_{ii} = \frac{e^{-\frac{1}{2} \| y_i - y_j \|^2}}{\sum_{k \neq j} e^{-\frac{1}{2} \| y_i - y_k \|^2}}.
\]

Nonconvex optimisation is initialisation dependent.

Scale \(\sigma \) plays a similar role to neighbourhood definition:

- Fixed \(\sigma \): resembles a fixed-radius ball.
- Choose \(\sigma \) to maintain consistent entropy in \(p_{ij} \) of \(q_i \): similar to k-nearest neighbours.

Gaussian Process Latent Variable Models

Recap: probabilistic PCA

\[
\begin{align*}
Y | X &\sim \mathcal{N}(\Lambda X, \beta^{-1}I) \\
X &\sim \mathcal{N}(0, \Lambda)
\end{align*}
\]

Usually: compute posterior over \(X = [x_1, \ldots, x_N]^T \), maximizing likelihood over \(\Lambda \).

Suppose we know the values of the latent \(X \), then we can integrate out \(\Lambda \) (c.f. linear regression), giving a conditional probability of \(Y = [y_1 \ldots y_N]^T \):

\[
\Lambda \sim \mathcal{N}(0, \alpha^{-1}I)
\]

\[
p(Y | X) \sim [2\pi K]^{-\frac{D}{2}} \exp \left(-\frac{1}{2} \text{Tr}[K^{-1}YY^T] \right)
\]

This is just \(D \) independent Gaussian processes, one for each dimension of \(Y \). Each Gaussian process describes a mapping from latent space \(X \) to one dimension of \(Y \).

Replacing the linear kernel with nonlinear kernels gives nonlinear mappings—nonlinear dimensionality reduction.

But now dependence on \(X \) is complicated—instead of computing a posterior over \(X \) we can only find point values that maximise the likelihood (jointly with the hyperparameters).
Gaussian Process Latent Variable Models

Intractability

For many probabilistic models of interest, exact inference is not computationally feasible. This occurs for three (main) reasons:

▶ Distributions may have complicated forms (e.g. non-linearities in generative model).
▶ “Explaining away” causes coupling from observations
 Observing the value of a child induces dependencies amongst its parents.
▶ Even with simple models, being Bayesian and computing the full posterior over both latent variables and parameters
 There is often strong coupling between latent variables and parameters.

We can still work with such models by using approximate inference techniques to estimate the latent variables.

Approximate Inference

▶ Linearisation: Approximate nonlinearities by Taylor series expansion about a point (e.g. the approximate mean or mode of the hidden variable distribution). Linear approximations are particularly useful since Gaussian distributions are closed under linear transformations (e.g., EKF). Also Laplace's approximation.
▶ Monte Carlo Sampling: Approximate posterior distribution over unobserved variables by a set of random samples. We often need Markov chain Monte Carlo methods to sample from difficult distributions.
▶ Variational Methods: Approximate the hidden variable posterior $p(H)$ with a tractable form $q(H)$, such that $KL[q||p]$ is minimised. This gives a lower bound on the likelihood that can be maximised with respect to the parameters of $q(H)$.
▶ Local Message Passing Methods: Approximate the hidden variable posterior $p(H)$ with a tractable form $q(H)$ or with a set of locally consistent tractable forms by other means (loopy belief propagation, expectation propagation).
▶ Recognition Models: Approximate the hidden variable posterior distribution using an explicit bottom-up recognition model/network.

References

References

- **SNE Hinton** & Roweis, NIPS, 2002; **1-SNE van der Maaten & Hinton, JMLR, 9:2579–2605, 2008.**

More at: http://www.gatsby.ucl.ac.uk/~maneesh/dimred/