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Expectation Maximisation > Concave function.
» Maximum may be closed-form.
> If not, numerical optimisation is still generally straightforward.
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> Usually no closed form optimum.
Term 1, Autumn 2015 > Often multiple local maxima.

> Direct numerical optimisation may be possible but infrequently easy.

Example: mixture of Gaussians The joint-data likelhood

Data: X = {x...xn} » For many models, maximisation might be straightforward if y were not latent, and we

Latent process: could just maximise the joint-data likelihood:

iid .
s; ~ Disc[n]
.
Component distributions: £(0x, 6y) Z¢ (6x,¥n) ' Tx(xa)+6y ZTy(yn Zlog Z«(¢(0x,¥n))—Nlog Z,(6,)
X | (S,' = m) ~ Pm[em] = N(Hm, Zm)

Marginal distribution: » Conversely, if we knew 6, we could compute (the posterior over) the values of y.

P(Xi) = 7mPu(X; Om)

» |dea: update @ and (the distribution on) y in alternation, converging to a self-consistent
answer.

Log-likelihood: » Will this yield the right answer?

n k
o L *l(x/ Hm) T (Xi—Hm)
({pm} {Zm} ) = 21 log 21 il > Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.
m:

i=



The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood. It starts from arbitrary values of the
parameters, and iterates two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

» Useful in models where learning would be easy if hidden variables were, in fact,
observed (e.g. MoGs).

» Decomposes difficult problems into series of tractable steps.
» No learning rate.
» Framework lends itself to principled approximations.

» How does it work?

The lower bound for EM - “free energy”
Observed data X' = {x;}; Latent variables J = {y;}; Parameters 6 = {6, 6, }.

Log-likelihood:
£(0) = log P(X|0) = log /dy P(Y, X|0)

By Jensen, any distribution, (), over the latent variables generates a lower bound:

o) = 10g @y q(ﬂ% > [ay ) Iog% “ F(q.0).
Now,
[ a)yiog % = [av a)iog P, x10) — [ a)10g ()

- / dY q(I)log P(Y, X|60) + H[d],
where H[q] is the entropy of g()).

So:
F(q,0) = (log P(Y, X[0)) (5 + Hla]

Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.
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X1 aXi + (1 — a)Xz X2
In general:
Fora; >0,> ;=1 (and {x; > 0}): For probability measure « and concave f
Iog (Za,’X,’) 2 Za,- Iog(x,-) f(Ea [X]) 2 ]EOé [f(X)]

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of a.

The E and M steps of EM

The lower bound on the log likelihood is given by:

F(q,0) = (log P(Y, X[0)) ) + Hldl,

EM alternates between:
> E step: optimize F(q, 0) wrt distribution over hidden variables holding parameters fixed:

q"¥ () := argmax F(q(¥),0* ).
q(Y)

» M step: maximize F (g, ) wrt parameters holding hidden distribution fixed:

0" .= argmax F(q')()),6) = argmax (log P(Y, X10)) 4003
0 0

The second equality comes from the fact H [q(")(y)} does not depend directly on 6.



The E Step Coordinate Ascent in / (Demo)

The free energy can be re-written To visualise, we consider a one parameter / one latent mixture:
F(q,0) = /q(y) log P(Y, Xx|0) dy s ~ Bernoulli[r]
a(y) x|s=0~N[-1,1]  x|s=1~N[1,1].
P(YV|X,0)P(X|0
= /q(y) log POIX. 0)P(X19) q())))( 19) ay Single data point x; = .3.
P(Y| X, 0) q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].

= £(0) — KL[g(V)[|P(V|X, 0)]
The second term is the Kullback-Leibler divergence.

This means that, for fixed 6, F is bounded above by ¢, and achieves that bound when
KL[g(V)[|P(Y]X,0)] = 0.

But KL[q||p] is zero if and only if g = p (see appendix.)
So, the E step sets

") = P|x, 0" ")

and, after an E step, the free energy equals the likelihood.

Coordinate Ascent in 7 (Demo) EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

(0% - F q(k)’e(k—ﬂ < F q(k)’e(k) < (6% :
( ) E step ( ) M step ( )Jen_sen @™

» The E step brings the free energy to the likelihood.
» The M-step maximises the free energy wrt 6.
» F < ¢ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that 0 = 9= iff F increases, then the overall EM iteration
will step to a new value of 8 iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see
appendices).




EM Summary Partial M steps and Partial E steps

» An iterative algorithm that finds (local) maxima of the likelihood of a latent variable

model.
Partial M steps: The proof holds even if we just increase F wrt 6 rather than maximize.

£(6) = log P(X|0) = log / dy P(X|Y,0)P(V|0) (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step
» Increases a variational lower bound on the likelihood by coordinate ascent.

0 0
— log P(X,Y|0 1y = == log P(X|6
F(9.0) = (log PV, X19)), + Hlal = £(6) — KL[G(Y) [P(V10)] < £(6) 50|, 9P Yo poiaen = 55| - 108 PEI0)
> E step: So E-step (inference) can be used to construct other gradient-based optimisation schemes
step: (e.g. “Expectation Conjugate Gradient”, Salakhutdinov et al. ICML 2003).
¢ (V) = argmax F(q(¥),0"") = P(|x,0*7)
q(y)
Partial E steps: We can also just increase F wrt to some of the gs.
> M step: For example, sparse or online versions of the EM algorithm would compute the posterior for a
®) . *) _ subset of the data points or as the data arrives, respectively. One might also update the
0" = argmax F(@(),0) = argmax (log P(Y, X18)) 400y posterior over a subset of the hidden variables, while holding others fixed...

> After E-step F(q,0) = ¢(0) = maximum of free-energy is maximum of likelihood.

EM for MoGs The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

» Evaluate responsibilities k Kon 1 ,
0) = =m|o =m0 am — —(x— um
P(xIF) =3 pls = mif)e(xls = m,0) o< 3 Chexp { = 5 (x = )},

po_  Po()Tm pra
Y P (X) T
m . . . 2 .. .
where 6 is the collection of parameters: means um, variances o}, and mixing proportions
» Update parameters mm = p(s = m|).
> fimXi The hidden variable s; indicates which component generated observation x;.
Hm < =
> fim
T
(% — X —
X 21 m(X, ZH";B”( /= Hn) The E-step computes the posterior for s; given the current parameters:
1
2 fim q(si) = p(si|xi, 0) o< p(xisi, O)p(sil6)
Tm N

= m 1 et
P q(si=m) x Im exp{ — —(x — um)2} (responsibilities) < (0s=m)
Om 20’m q

with the normalization such that )~ rim = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):
E = (log p(x, 510)) 4oy = > _ a(s) log[p(s]6) p(x]s, 6)]

1
= ;r,m[logwm —logom — E(X,‘ — pm)?].

Optimum is found by setting the partial derivatives of E to zero:

0 P — i limXi
E:an(xl fm) _ o umfz,m

Ofptm ; 203, B Z,, Tim

) 1 (6 — pm)? 2 2 tm(Xi — pm)®
—E = T |:_ - ] =0 = = ! ’
Oom Z "L om - o o > fim

1 OE 1
T E=N"rm—, LEir=0 = =-S5 "1m,
87rm Z im ™ 8ﬂ'm + Tm n Z, im

where )\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

The E step for Factor Analysis

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gs(yn) = p(Yn|Xn, 8) = p(Yn, Xn|6)/p(Xn|6)

Tactic: write p(yn, X»|6), consider X, to be fixed. What is this as a function of y,?
p(yn, Xa) = p(¥n)P(Xs|yn)
= (2n) ¥ e~ Lylva} [27V] F exp{— 1 (x — Ava) V(%0 — Ay)}
= ox e Lyt (%o — AY)V (ke — Ay}
= ¢x exp{—%[y;(l + AU A)y, — 2yt ATW T x0T}
= ¢'x eXp{—%[va1yn —2yi T+ T pal}

SoX =(/+A VA" =/~ BAand py = TATW X, = Bx,. Where § = TATW .
Note that w,, is a linear function of x, and £ does not depend on x,.

EM for Factor Analysis

The model for x:

p(xi8) = [ Py O)p(xly.6)dy = N0, + )
@ @ ce o Model parameters: § = {A, W}.

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: ga(yn) = p(Yn|Xn, ;).

M step: Find the 0;.1 that maximises F(q, 0):

F(q,0)

> / Gn(Yn) [log p(Yn|0) + 109 P(Xn|Yn, ) — 109 Gn(yn)] dYn

= > / an(yn) [log p(¥n|0) + log p(Xalys, 0)] dyn + c.

The M step for Factor Analysis

M step: Find 6:+1 by maximising 7 = Z (log p(yn|0) + log p(Xn|Yn, 0))

n

an(yn) +c

log p(yn0) + log p(Xa|yn, 0)
== 2yl — 5109 W] — 2 (0 — Ayn)W " (X0 — Ayi)
=c - % log |V| — % [X;W71Xn —2x W Ay, + yIAT\Uqu,,]
—c— % log |W| — % [XZ\IJ_1X,7 W Ay, + T [/\Tw”/\ynyZH
Taking expectations wrt gn(yn):

—c - % log |W| — % [XZ\IJ_1xn X A, + T [/\Tw”/\(unuﬁ n z)H

Note that we don’t need to know everything about g(yn), just the moments (y,) and <y,,yﬁ>.
These are the expected sufficient statistics.



The M step for Factor Analysis (cont.)

F=¢c - g log |W| — % 3 [x;w*‘xn oW A, + T [/\Tw*‘/\(unuﬁ n >:)H

n

Taking derivatives wrt A and W™, using aTr[AB] =A"and al%w =AT:

g—f =y Zn:xnuﬁ — VA (NZ + zﬁ:unul> =0
—1
= A= (Z Xnul> <N2+Zﬂnul>

oF N 1
=2V 3 Z [xnxﬁ — AptaXh — Xopb AT+ A(ptnpal + z)/\T]
-~ 1
== Z [x,,x — ApaXh — Xopf AT + Aptnpeh + Z)/\T]
U= /\Z/\T+1N Z(X” — Apn)(Xn — Apn)T (squared residuals)
n

Note: we should actually only take derivatives w.r.t. W44 since W is diagonal.
As ~ — 0 these become the equations for ML linear regression

EM for exponential families

EM is often applied to models whose joint over z = (y, x) has exponential-family form:

p(z|0) = 1(z) exp{6'T(2)}/2(6)

(with Z(0) = [ f(z) exp{0"T(z) }dz) but whose marginal p(x) & ExpFam.
The free energy dependence on 6 is given by:

F(q,0) = / a(y) log p(y, x|6)dy — H[q]

= /q(y) [07T(z) — log Z(6)] dy + const wrt 0
= 0"(T(2)),, — log Z(6) + const wrt

So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:
0 1 0 1 0

3 log Z(0) = ﬁ%Z(G) = ﬁ% / f(z) exp{@TT(Z)}

ﬁf(z) exp{@TT(z)} -T(z) = (T(2)|6)

OF
Thus, the M step solves: 20 = (T(2)) gy — (T(2)|0) =0

Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|0) = Zwk N (g, AN + W)

where 7, is the mixing proportion for FA k, pu is its centre, A is its “factor loading matrix”,
and V¥ is a common sensor noise model. 6 = {{mx, px, Ak fr=1..k, ¥}
We can think of this model as having two sets of hidden latent variables:

» A discrete indicator variable s, € {1,... K}
» For each factor analyzer, a continous factor vector y, x € R

X|9 Z’D S"|0 / y|S’77 )p(x"‘y7 51770) dy

sp=1
As before, an EM algorithm can be derived for this model:
E step: We need moments of p(Yn, Sn|Xa, 8), specifically: (ds,=m), (ds,=m¥n) and
<5sn:mynyz>-

M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf
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Proof of the Matrix Inversion Lemma

(A+XBX) " =AT —ATX(BT + XTATIX)TIXTAT!
Need to prove:
(A“ —AT'X(B™' + XTA_1X)_1XTA_1) (A+XxBX") =1
Expand:
I+ A'XBXT = AT X(B T 4+ XTATX) X AT X(BT H XTATTX) TIXTAT XBXT
Regroup:
—I+A "X (BXT B+ XATX) X (B + XTA’1X)"XTA’1XBXT)
—I+A'X (B B+ X AX) B BX — (BT + XTA’1X)’1XTA’1XBXT)
— I+ A X (BXT B+ XATX) (B + XTA*‘X)BXT)
=14+ A'X(BX"—BX") =1

Fixed Points of EM are Stationary Points in /

Let a fixed point of EM occur with parameter 8. Then:

0
39<|09 PV, X | 0)) P(YV|X,0%)

=0
0*

Now,  ¢(0) = log P(X|0) = (log P(X|0)) p(y) x 6+

_ P(Y, X16)
- <Iog PV X, ‘9)>P(yx 6%)
= (log P(Y, X16)), P(Y|X,6%) — (log P(V|X,0))p P(V|X,6%)

so, d d

d
@6(0) a0 (log P(V|X,0)) py| 2,64

——(log P(Y, XW» PVIX,0%) T 4o

The second term is 0 at 6* if the derivative exists (minimum of KL[-||-]), and thus:

d d
%E(H) . d9<|og P(Y, X10)) by 2,64 o =0

So, EM converges to a stationary point of £(0).

KL[q(x)|lp(x)] > 0, with equality iff Vx : p(x) = g(x)

First consider discrete distributions; the Kullback-Liebler divergence is:
KL{gllp] = gilog %
i
To minimize wrt distribution g we need a Lagrange multiplier to enforce normalisation:
EEKLglpl+A(1 - a) = q '09% +A(1->a)
i i i
Find conditions for stationarity

OE
% = logg —logpi+1—A=0= q = pexp(A—1)
!

OE = qi = pi.
Check sign of curvature (Hessian):

PE 1 N FPE
dqidq  q = 0qi0g;

SO unique stationary point g = p; is indeed a minimum. Easily verified that at that minimum,

KL[q||p] = KL[p||p] = 0.
A similar proof holds for continuous densities, using functional derivatives.

Maxima in F correspond to maxima in /

Let 8" now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt 6 again we find

a? a?

SR 0) = 2 l0g POVIX, ) ey

a?
|09 P(y X|0)> P(YV|X,0%) — d62<

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

f* is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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