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Example: mixture of Gaussians

Data: X ={x...xn}

Latent process:
iid .
s; ~ Disc[m]

Component distributions:
X | (SI = m) ~ Pm[am] = N(Hm, Zm)

Marginal distribution:

k
= Z Wum(X; em)
m=1

Log-likelihood:
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Log-likelihoods

» Exponential family models: p(x|0) = f(x)e? ™ /Z(6)

£0) =0">  T(x,) — Nlog Z(6) (+ constants)

n

> Concave function.
» Maximum may be closed-form.
> If not, numerical optimisation is still generally straightforward.
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» Latent variable models: p(x|6,8,) = /dy f(x)

2 $(0:,3) Tx(x) o)

2(0x,0,) = Zlog/dyfx Z(6(05,y)) y(y) Z,00,)

> Usually no closed form optimum.
> Often multiple local maxima.
> Direct numerical optimisation may be possible but infrequently easy.

The joint-data likelihood and EM

» For many models, maximisation might be straightforward if y were not latent, and we
could just maximise the joint-data likelihood:

0(0x,0,) = Z¢>(ex,yn) Te(xn)+0, ZTy(y,, ZlogZX(¢ 0x,yn))—Nlog Z,(8y)

» Conversely, if we knew 6, we might easily compute (the posterior over) the values of y.

» |dea: update € and (the distribution on) y in alternation, to reach a self-consistent
answer. Will this yield the right answer?

» Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.



The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a
(local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

E step: Fill in values of latent variables according to posterior given data.
M step: Maximise likelihood as if latent variables were not hidden.

» Decomposes difficult problems into series of tractable steps.
> An alternative to gradient-based iterative methods.
> No learning rate.

> In ML, the E step is called inference, and the M step learning. In stats, these are often
imputation and inference or estimation.

> Not essential for simple models (like MoGs/FA), though often more efficient than
alternatives. Crucial for learning in complex settings.

» Provides a framework for principled approximations.

The lower bound for EM - “free energy”
Observed data X = {x;}; Latent variables Y = {y,}; Parameters 6 = {6y, 6, }.

Log-likelihood:
£(0) = log P(X|0) = log /dy P(Y, X|0)

By Jensen, any distribution, g()’), over the latent variables generates a lower bound:

£0) = og [ @y q() "2l (3; (’;()‘9) > [ av)iog P (3”( ;)‘9) = F(q,0).
Now,
[ ayog 0 — [ay a()iog P2, ¢16) - [ a(v)1oga(v)

— [ 4y a(v)10g PV, 16) + Hla],
where H[q] is the entropy of g()).

So:
F(q,0) = (log P(Y, X1(0)) (5 + Hla]

Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.
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In general:
Fora; > 0,> a;i=1(and {x; > 0}): For probability measure « and concave f
Iog (Zaix;) 2 Za; Iog(x,) f(Ea [X]) 2 ]EOé [f(X)]

Equality (if and) only if f(x) is almost surely constant or linear on (convex) support of c.

The E and M steps of EM

The free-energy lower bound on ¢(6) is a function of 6 and a distribution g:

F(q,0) = (log P(Y, X[0)) () + Hldl,

The EM steps can be re-written:
> E step: optimize F(q, 0) wrt distribution over hidden variables holding parameters fixed:

q"(¥) := argmax F(q(¥),0" ).
qa(Y)

» M step: maximize F (g, ) wrt parameters holding hidden distribution fixed:

0" .= argmax F(q)()),6) = argmax (log P(Y, X10)) 4003
0 0

The second equality comes from the fact H [q(")(y)} does not depend directly on 6.



The E Step

The free energy can be re-written

P, X10)

F(q,0) = / ) iog "1 oy

=/q(y)|og POYIX.0)P(X]6) o,

a(y)
_ / q(») log P(X60) dY + / a) Iog%

= £(0) — KL[q(V)|[P(¥|X,0)]

The second term is the Kullback-Leibler divergence.

ay

This means that, for fixed 6, F is bounded above by ¢, and achieves that bound when
KL[g(V)[P(Y]X,0)] = 0.

But KL[q||p] is zero if and only if g = p (see appendix.)
So, the E step sets

d® ) = P(y|x, 0% ") [inference / imputation]

and, after an E step, the free energy equals the likelihood.

Coordinate Ascent in 7 (Demo)

Coordinate Ascent in / (Demo)

To visualise, we consider a one parameter / one latent mixture:

s ~ Bernoulli[~]
X[s=0~N[-1,1]  x|s=1~N[1,1].

Single data point x; = .3.

q(s) is a distribution on a single binary latent, and so is represented by r; € [0, 1].

EM Never Decreases the Likelihood
The E and M steps together never decrease the log likelihood:

(0% - F q(k)’e(k—ﬂ < F q(k)’e(k) < (6% ,
( ) E step ( )M§ep ( )Jen_sen )

» The E step brings the free energy to the likelihood.
» The M-step maximises the free energy wrt 6.
» F < ¢ by Jensen — or, equivalently, from the non-negativity of KL

If the M-step is executed so that 0 = 9= iff F increases, then the overall EM iteration

will step to a new value of 8 iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see

appendices).



EM Summary

» An iterative algorithm that finds (local) maxima of the likelihood of a latent variable
model.

£(0) = log P(X|0) = log / dY P(x|Y,0)P(Y|9)

> Increases a variational lower bound on the likelihood by coordinate ascent.

F(q,0) = (log PV, X[0)) () + Hla] = £(0) — KL[q(Y)[|P(V|X)] < £(0)

» E step:
" () := argmax ]—"(q(y),é)(kq)) = P(Y|x, 0% ")
a(y)
> M step:

o) = argmax F(@ W),0) = argmax (log P(Y, X10)) 4003

v

After E-step F(q, 0) = £(6) = maximum of free-energy is maximum of likelihood.

EM for MoGs

» Evaluate responsibilities

- Pn(X)Tm
im Zm/ P, (x)Trm/

» Update parameters

Z,- limXi
o 2 lmXi
A S
s o i fim(Xi — pm) (X — pm)"
K > fim
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Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just increase F wrt 0 rather than maximize.
(Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

0

0
90 » (log P(X:y|9))q(k)(y)[:P(y\x,g(k%))] =% log P(X'|6)

k—1) olk—1)

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other
gradient-based optimisation schemes (e.g. “Expectation Conjugate Gradient”, Salakhutdinov
et al. ICML 2003).

Partial E steps: We can also just increase F wrt to some of the gs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a
subset of the data points or as the data arrives, respectively. One might also update the
posterior over a subset of the hidden variables, while holding others fixed...

The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

k

p(x16) = > p(s = mO)plxls = m,8) oc 30 " exp { 57 (x — )},

m=1 m=1

where 6 is the collection of parameters: means jum, variances o2, and mixing proportions
mm = p(s = m|h).

The hidden variable s; indicates which component generated observation x;.

The E-step computes the posterior for s; given the current parameters:
q(si) = p(sixi, 0) o< p(xilsi, 0)p(si|0)

e 1 S
i < q(si = m) L exp{ — =—5 (X — um)?} (responsibilities) < (J5—m)
Om 20, q

with the normalization such that )~ rim = 1.



The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):
= (log p(x, 510)) 45 = > _ a(s) log[p(s]6) p(x]s, 6)]
1 2
= Zr,-m[logwm —logom — E(Xi — pm)°].

ism

Optimum is found by setting the partial derivatives of E to zero:

- n
o} E— Z . (XI ,U/m) —0 = pp= Z imXi
i

a,uzm 20'/277 Z,' Fim ’
e fim)? 2 _ 2 fm(X — pm)?
—E = ri [ 7] =0 = ==
60'm Z " Uam am Zi lim
oE
aﬂ_mE Z:m - TMJF)\—O = Tm= — Z/rim’

where )\ is a Lagrange multiplier ensuring that the mixing proportions sum to unity.

The E step for Factor Analysis

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: gn(yn) = p(Yn|Xn, 0) = P(¥n, Xn|0)/p(Xn|0)

Tactic: write p(yn, X»|0), consider X, to be fixed. What is this as a function of y,?

P(Yn)P(Xnlyn)
_K 1 _1 1 _
= (2m) 2 exp{—Ey;yn} |2rW| "2 exp{—E(x,7 — /\y,,)T\Il 1(x,7 — Ayn)}

p(yf7> x")

1 _
= cxexp{—lyayn + (%0 — Ayn) "V (%0 — Ayo)]}
= ¢x exp{*%[vﬁ(w NNy, — 2y, ATV 0]}
1 _
= o xexp{—3[yaX Yo —2yaT po+ pnX puol}

SoY =(/+AN" VA =1 —BAand p, = ATV X, = Bx,. Where 8 = TATWU T,
Note that p, is a linear function of x, and X does not depend on x.

EM for Factor Analysis

The model for x:

p(xi6) = [ p(y0)p(x(y. O)dy = N0, AN+ )

@ @ oo o Model parameters: 6 = {A, V}.

E step: For each data point x,, compute the posterior distribution of hidden factors given the
observed data: ga(yn) = p(Yn|Xn, 0:).

M step: Find the 0;.1 that maximises F(q, 0):

F@0) = 3 [ (o) logp(yil6) + log p(xslye,6) ~ 109 s(y)] oy

= > / an(Yn) [log p(yn|6) + log p(Xs|ya, 0)] dys + c.

The M step for Factor Analysis

M step: Find 6;,1 by maximising 7 = Z (log p(yn|0) + log p(Xn|yn, 0))

n

an(Yn) +c

log p(yn|6) + log p(xnlyn, 0)

y,,yn - Iog W) — f(xn AYn) W (X0 — Ayn)
—c- %mg W]~ 3 [0 50— Xt Ay, + yIATY Ay
=~ Jlog W] — 1 [xhW %, — 2w Ay, T (AT Ay, |
2 2
Taking expectations wrt gn(yn):

—c— % log |W| — % [xﬁ\lﬂxn — X A, T [/\Tw*‘/\(unuﬁ + Z)H

Note that we don’t need to know everything about g(yn), just the moments (y,) and <ynyﬁ>.
These are the expected sufficient statistics.



The M step for Factor Analysis (cont.)

F=c - g log |W| — % 3 [xﬁ\u*‘xn — XV Apy + T [/\T\u”/\(unul T Z)H

n

Taking derivatives wrt A and W™, using 2481 — AT and 2199141 — A= T:

?9;/7;— —y! Xn:x,,u; —w'A (NZ + zn:unu;> =0
-1
= A= (Z xnu2> (NZ+ > uml)

oF - N\IJ — % Z [x,,x; — A,u,,x; — x,,u;/\T + /\(unu; + ):)/\T}
n

v 2
S
V=23 [x,,x — ApoXh — Xnpth AT + A(ptnpeh + )Z)AT]

n

V= ATA + Z(xnf/\un — Apn)' (squared residuals)

Note: we should actually only take derivatives w.r.t. W4y since W is diagonal.
As ~ — 0 these become the equations for ML linear regression

EM for exponential families

EM is often applied to models whose joint over z = (y, x) has exponential-family form:

p(z|0) = 1(2) exp{6'T(2)}/2(6)

(with Z(0) = [ f(z) exp{6"T(z)}dz) but whose marginal p(x) & ExpFam.
The free energy dependence on 8 is given by:

F(q,0) = /q(y) log p(y, x|0)dy + H[q]

= /q(y) [07T(z) — log Z(6)] dy + const wrt 0
= 60'(T(2)) 4y) — l0g Z(6) + const wrt §
So, in the E step all we need to compute are the expected sufficient statistics under q.
We also have:
1 0

231092(0) = 71 2.20) = i 2 [ ta) e T(2))

= | Zy!@exp{6'T(2)} - T(2) = (T(2)|6)

OF

Thus, the M step solves: 20 = (T(2) gy — (T(2)|0) =0

Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

p(x|0) = Z’Tk Nk, NN} + W)

where 7, is the mixing proportion for FA k, p is its centre, Ak is its “factor loading matrix”,
and V¥ is a common sensor noise model. 6 = {{m«, ptx, Ak tx=1..x, V}
We can think of this model as having two sets of hidden latent variables:

» A discrete indicator variable s, € {1,... K}
» For each factor analyzer, a continous factor vector y, x € R

o) = 3 plsil) [ pWisn O)ptxoly.51.6) cy

sp=1
As before, an EM algorithm can be derived for this model:

E step: We need moments of p(Yn, Sn|Xn, 0), specifically: (ds,=m), (ds,=m¥n) and
<5sn=mvnv2>-

M step: Similar to M-step for FA with responsibility-weighted moments.
See http://www.learning.eng.cam.ac.uk/zoubin/papers/tr-96-1.pdf

EM for exponential family mixtures
To derive EM formally for models with discrete latents (including mixtures) it is useful to
introduce an indicator vector s in place of the discrete s.

ssi=m & s§=][0,0,..., 1 ,...0]

~~
mth position

Collecting the M component distributions’ natural params into a matrix © = [0]:

log P(X,8) =) [(Iog 7)'si +5s O T(x;) —s] log Z(@)} + const

i

where log Z(©) collects the log-normalisers for all components into an M-element vector.
Then, the expected sufficient statistics (E-step) are:

Z (s,-)q (responsibilities rim)
Z T(x,')<s,T>q (responsibility-weighted sufficient stats)

And maximisation of the expected log-joint (M-step) gives:

) Z <Si>q
(T001657) = (3 T0)(Ism),) /(3 (lsln),)



EM for MAP

What if we have a prior?
p(2|0) = 1(z) exp{0"T(2)}/Z(0) p(0) = F(v,7)exp{0'7}/2(0)"
Augment the free energy by adding the log prior:
Funr(q,0) = /q(y) log p(Y, X,60)dY + H[q] < log P(X|6)+log P(6)
- / a)[67(3"T() + 7) — (N + ) log Z(6)] o + const wrt ¢
= GT(<T(z)>q(y) + 7) — (N + v)log Z(8) + const wrt 6

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy
maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately — we’ll return to this later as “Variational Bayes”.

Proof of the Matrix Inversion Lemma

(A+XBX) ' =AT" —ATX(BT + XA X) T XA
Need to prove:

(A" —AT'X(B XTA’1X)’1XTA’1) (A+XBXT) =1
Expand:

I+ AT XBXT = AT X(B + XATX) X — AT X(BT H XTATX)TIXTAT XBXT
Regroup:

=14+ A X (BXT= (BT +XATX) X — (B’1+XTA"X)’1XTA"XBXT)

=I4+AX(BXT—(B '+ XAT'X) (B + XA X)BX)

:I+A’1X(BXT B+ XA X)"'B'BXT (B*‘+XTA*‘X)*‘XTA*‘XBXT)

=I+A'X(BX" - BX") =1
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KL[q(x)|lp(x)] > 0, with equality iff Vx : p(x) = g(x)

First consider discrete distributions; the Kullback-Liebler divergence is:
KL[g[lp] = > ailog %
i
To minimize wrt distribution g we need a Lagrange multiplier to enforce normalisation:
Ed_EfKL[qu]+/\(1—Z Zq,log——h\ 1—20;)
i
Find conditions for stationarity

E
g—q = logg —logpi+1—A=0=q = pexp(A—1)

OE = g = pi.
- — 1— = = 1
I ek

Check sign of curvature (Hessian):

PE 1 N OPE
dqidq  q = 0qi0q;

S0 unique stationary point g; = p; is indeed a minimum. Easily verified that at that minimum,

KL[ql||p] = KL[p||p] = O.
A similar proof holds for continuous densities, using functional derivatives.



Fixed Points of EM are Stationary Points in /

Let a fixed point of EM occur with parameter 8. Then:

0

90 (log P(Y, X | 9)>P(y\X 0*) .

=0

Now,  (6) = log P(X0) = (log P(X|0)) p(y | 6+

P(y7X|9)>

= | _

<Og P(y|X70) P(YV|X,0%)

= (log P(Y, X10)) py| x4y — (109 P(V|X,0)) iy 20 6%

S0, d

20(0) = 55000 PO, X10)) iy .00) — =009 POVIX 0)) o)

The second term is 0 at §* if the derivative exists (minimum of KL[-||-]), and thus:

d
38O = 55000 PO Xy n| =0

So, EM converges to a stationary point of £(6).

Maxima in F correspond to maxima in /

Let 0" now be the parameter value at a local maximum of F (and thus at a fixed point)

Differentiating the previous expression wrt § again we find

d2

L 1(8) = 2100 P, X10))y .00, ~

d92<|09p(y|X 9)> P(Y|X,0%)

The first term on the right is negative (a maximum) and the second term is positive (a
minimum). Thus the curvature of the likelihood is negative and

f* is a maximum of /.

[...as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].
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