Probabilistic & Unsupervised Learning

Expectation Maximisation

Maneesh Sahani
maneesh@gatsby.ucl.ac.uk

Gatsby Computational Neuroscience Unit, and
MSc ML/CSML, Dept Computer Science
University College London

Term 1, Autumn 2016
Log-likelihoods

- Exponential family models:
 \[p(x|\theta) = f(x)e^{\theta^T T(x)} / Z(\theta) \]

 \[\ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \quad (+ \text{constants}) \]
Log-likelihoods

- Exponential family models: \(p(x|\theta) = f(x)e^{\theta^T T(x)} / Z(\theta) \)
 \[
 \ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \quad (+ \text{constants})
 \]
 - Concave function.

- Latent variable models:

 \[
 p(x|\theta, x^, \theta_y) = \int dy f_x(x) e^{\phi(\theta, y)} T_x(x) Z_x(\phi(\theta, y))
 \]
 \[
 p(y|x, \theta) = f_y(y) e^{\theta^T y} Z_y(\theta)
 \]
 \[
 \ell(\theta_x, \theta_y) = \sum_n \log \int dy f_x(x) e^{\phi(\theta_x, y)} T_x(x) Z_x(\phi(\theta_x, y)) f_y(y) e^{\theta_y^T y} Z_y(\theta_y)
 \]
 - Usually no closed form optimum.
 - Often multiple local maxima.
 - Direct numerical optimisation may be possible but infrequently easy.
Log-likelihoods

- Exponential family models: \(p(x|\theta) = f(x)e^{\theta^T T(x)} / Z(\theta) \)

\[
\ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \quad (+ \text{constants})
\]

- Concave function.
- Maximum may be closed-form.
Log-likelihoods

- Exponential family models: \(p(\mathbf{x}|\theta) = f(\mathbf{x})e^{\theta^T T(\mathbf{x})}/Z(\theta) \)

\[
\ell(\theta) = \theta^T \sum_n T(\mathbf{x}_n) - N \log Z(\theta) \quad (+ \text{constants})
\]

- Concave function.
- Maximum may be closed-form.
- If not, numerical optimisation is still generally straightforward.
Log-likelihoods

- Exponential family models:
 \[p(x|\theta) = f(x)e^{\theta^T T(x)}/Z(\theta) \]

 \[\ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \text{ (}+\text{ constants)} \]

 ▶ Concave function.
 ▶ Maximum may be closed-form.
 ▶ If not, numerical optimisation is still generally straightforward.

- Latent variable models:
 \[p(x|\theta_x, \theta_y) = \int dy \frac{f_x(x) e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} \frac{f_y(y)}{Z_y(\theta_y)} \]

 \[\ell(\theta_x, \theta_y) = \sum_n \log \int dy f_x(x) \frac{e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} f_y(y) \frac{e^{\theta_y^T T_y(y)}}{Z_y(\theta_y)} \]
Log-likelihoods

- Exponential family models: \(p(x|\theta) = f(x)e^{\theta^T T(x)} / Z(\theta) \)

\[
\ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \quad (+ \text{constants})
\]

- Concave function.
- Maximum may be closed-form.
- If not, numerical optimisation is still generally straightforward.

- Latent variable models: \(p(x|\theta_x, \theta_y) = \int dy \ f_x(x) \frac{e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} \frac{f_y(y) e^{\theta_y^T T_y(y)}}{Z_y(\theta_y)} \)

\[
\ell(\theta_x, \theta_y) = \sum_n \log \int dy \ f_x(x) \frac{e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} f_y(y) \frac{e^{\theta_y^T T_y(y)}}{Z_y(\theta_y)}
\]

- Usually no closed form optimum.
Log-likelihoods

- Exponential family models:
 \[p(\mathbf{x}|\theta) = f(\mathbf{x})e^{\theta^T \mathbf{t}(\mathbf{x})}/Z(\theta) \]
 \[\ell(\theta) = \theta^T \sum_n \mathbf{t}(\mathbf{x}_n) - N \log Z(\theta) \quad (+ \text{constants}) \]

 - Concave function.
 - Maximum may be closed-form.
 - If not, numerical optimisation is still generally straightforward.

- Latent variable models:
 \[p(\mathbf{x}|\theta_x, \theta_y) = \int d\mathbf{y} f_x(\mathbf{x})e^{\phi(\theta_x, \mathbf{y})^T \mathbf{t}_x(\mathbf{x})}/Z_x(\phi(\theta_x, \mathbf{y})) f_y(\mathbf{y})e^{\theta_y^T \mathbf{t}_y(\mathbf{y})}/Z_y(\theta_y) \]

 \[\ell(\theta_x, \theta_y) = \sum \log \int d\mathbf{y} f_x(\mathbf{x})e^{\phi(\theta_x, \mathbf{y})^T \mathbf{t}_x(\mathbf{x})}/Z_x(\phi(\theta_x, \mathbf{y})) f_y(\mathbf{y})e^{\theta_y^T \mathbf{t}_y(\mathbf{y})}/Z_y(\theta_y) \]

 - Usually no closed form optimum.
 - Often multiple local maxima.
Log-likelihoods

- Exponential family models: \(p(x|\theta) = f(x)e^{\theta^T T(x)}/Z(\theta) \)

\[
\ell(\theta) = \theta^T \sum_n T(x_n) - N \log Z(\theta) \quad (+ \text{constants})
\]

- Concave function.
- Maximum may be closed-form.
- If not, numerical optimisation is still generally straightforward.

- Latent variable models: \(p(x|\theta_x, \theta_y) = \int dy \quad f_x(x) \frac{e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} \frac{f_y(y) e^{\theta_y^T T_y(y)}}{Z_y(\theta_y)} \)

\[
\ell(\theta_x, \theta_y) = \sum_n \log \int dy \quad f_x(x) \frac{e^{\phi(\theta_x, y)^T T_x(x)}}{Z_x(\phi(\theta_x, y))} \frac{f_y(y) e^{\theta_y^T T_y(y)}}{Z_y(\theta_y)}
\]

- Usually no closed form optimum.
- Often multiple local maxima.
- Direct numerical optimisation may be possible but infrequently easy.
Example: mixture of Gaussians

Data: \(\mathcal{X} = \{x_1 \ldots x_N\} \)

Latent process:
\(s_i \overset{iid}{\sim} \text{Disc}\[\pi]\)

Component distributions:
\(x_i \mid (s_i = m) \sim \mathcal{P}_m[\theta_m] = \mathcal{N}(\mu_m, \Sigma_m) \)

Marginal distribution:
\[P(x_i) = \sum_{m=1}^{k} \pi_m P_m(x; \theta_m) \]

Log-likelihood:
\[\ell(\{\mu_m\}, \{\Sigma_m\}, \pi) = \sum_{i=1}^{n} \log \sum_{m=1}^{k} \frac{\pi_m}{\sqrt{2\pi|\Sigma_m|}} e^{-\frac{1}{2} (x_i - \mu_m)^T \Sigma_m^{-1} (x_i - \mu_m)} \]
The joint-data likelihood and EM

- For many models, maximisation might be straightforward if y were not latent, and we could just maximise the joint-data likelihood:

\[
\ell(\theta_x, \theta_y) = \sum_n \phi(\theta_x, y_n)^T T_x(x_n) + \theta_y^T \sum_n T_y(y_n) - \sum_n \log Z_x(\phi(\theta_x, y_n)) - N \log Z_y(\theta_y)
\]
The joint-data likelihood and EM

▶ For many models, maximisation might be straightforward if \(y \) were not latent, and we could just maximise the joint-data likelihood:

\[
\ell(\theta_x, \theta_y) = \sum_n \phi(\theta_x, y_n)^T T_x(x_n) + \theta_y^T T_y(y_n) - \sum_n \log Z_x(\phi(\theta_x, y_n)) - \log Z_y(\theta_y)
\]

▶ Conversely, if we knew \(\theta \), we might easily compute (the posterior over) the values of \(y \).
The joint-data likelihood and EM

- For many models, maximisation might be straightforward if \(y \) were not latent, and we could just maximise the joint-data likelihood:

\[
\ell(\theta_x, \theta_y) = \sum_n \phi(\theta_x, y_n)^T T_x(x_n) + \theta_y^T \sum_n T_y(y_n) - \sum_n \log Z_x(\phi(\theta_x, y_n)) - N \log Z_y(\theta_y)
\]

- Conversely, if we knew \(\theta \), we might easily compute (the posterior over) the values of \(y \).

- **Idea:** update \(\theta \) and (the distribution on) \(y \) in alternation, to reach a self-consistent answer.
The joint-data likelihood and EM

- For many models, maximisation might be straightforward if y were not latent, and we could just maximise the joint-data likelihood:

$$
\ell(\theta_x, \theta_y) = \sum_n \phi(\theta_x, y_n)^T T_x(x_n) + \theta_y^T \sum_n T_y(y_n) - \sum_n \log Z_x(\phi(\theta_x, y_n)) - N \log Z_y(\theta_y)
$$

- Conversely, if we knew θ, we might easily compute (the posterior over) the values of y.

- Idea: update θ and (the distribution on) y in alternation, to reach a self-consistent answer. Will this yield the right answer?
The joint-data likelihood and EM

- For many models, maximisation might be straightforward if \mathbf{y} were not latent, and we could just maximise the joint-data likelihood:

$$
\ell(\theta_x, \theta_y) = \sum_n \phi(\theta_x, \mathbf{y}_n)^T \mathbf{T}_x(\mathbf{x}_n) + \theta_y^T \sum_n \mathbf{T}_y(\mathbf{y}_n) - \sum_n \log Z_x(\phi(\theta_x, \mathbf{y}_n)) - N \log Z_y(\theta_y)
$$

- Conversely, if we knew θ, we might easily compute (the posterior over) the values of \mathbf{y}.

- Idea: update θ and (the distribution on) \mathbf{y} in alternation, to reach a self-consistent answer. Will this yield the right answer?

- Typically, it will (as we shall see). This is the Expectation Maximisation (EM) algorithm.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step:** Fill in values of latent variables according to posterior given data.
- **M step:** Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
- No learning rate.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
- No learning rate.
- In ML, the E step is called *inference*, and the M step *learning*. In stats, these are often *imputation* and *inference* or *estimation*.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.

- Decomposes difficult problems into series of tractable steps.
- An alternative to gradient-based iterative methods.
- No learning rate.
- In ML, the E step is called *inference*, and the M step *learning*. In stats, these are often *imputation* and *inference* or *estimation*.
- Not essential for simple models (like MoGs/FA), though often more efficient than alternatives. Crucial for learning in complex settings.
The Expectation Maximisation (EM) algorithm

The EM algorithm (Dempster, Laird & Rubin, 1977; but significant earlier precedents) finds a (local) maximum of a latent variable model likelihood.

Start from arbitrary values of the parameters, and iterate two steps:

- **E step**: Fill in values of latent variables according to posterior given data.
- **M step**: Maximise likelihood as if latent variables were not hidden.

▶ Decomposes difficult problems into series of tractable steps.
▶ An alternative to gradient-based iterative methods.
▶ No learning rate.
▶ In ML, the E step is called *inference*, and the M step *learning*. In stats, these are often *imputation* and *inference* or *estimation*.
▶ Not essential for simple models (like MoGs/FA), though often more efficient than alternatives. Crucial for learning in complex settings.
▶ Provides a framework for *principled approximations*.
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

\[\log(x_1) + (1 - \alpha) \log(x_2) \leq \log(\alpha x_1 + (1 - \alpha) x_2) \]

In general:

For \(\alpha \geq 0 \), \(\sum \alpha_i = 1 \) (and \(\{ x_i > 0 \} \)):

\[\log(\sum \alpha_i x_i) \geq \sum \alpha_i \log(x_i) \]

For probability measure \(\alpha \) and concave function \(f \):

\[E_{\alpha}[f(x)] \geq f(E_{\alpha}[x]) \]

Equality (if and) only if \(f(x) \) is almost surely constant or linear on (convex) support of \(\alpha \).
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

\[
\log(\alpha x_1 + (1 - \alpha)x_2) \geq \alpha \log(x_1) + (1 - \alpha) \log(x_2)
\]

In general:

For \(\alpha_i \geq 0\), \(\sum \alpha_i = 1\) (and \(\{x_i > 0\}\)):

\[
\log(\sum \alpha_i x_i) \geq \sum \alpha_i \log(x_i)
\]

For probability measure \(\alpha\) and concave \(f\):

\[
f(E_{\alpha}[x]) \geq E_{\alpha}[f(x)]
\]

Equality (if and) only if \(f(x)\) is almost surely constant or linear on (convex) support of \(\alpha\).
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

In general:
Jensen’s inequality

One view: EM iteratively refines a **lower bound** on the log-likelihood.

In general:

For $\alpha_i \geq 0$, $\sum \alpha_i = 1$ (and $\{x_i > 0\}$):

$$\log \left(\sum_i \alpha_i x_i \right) \geq \sum_i \alpha_i \log(x_i)$$
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

\[
\log(\alpha x_1 + (1 - \alpha)x_2) \\
\alpha \log(x_1) + (1 - \alpha) \log(x_2)
\]

In general:

For \(\alpha_i \geq 0, \sum \alpha_i = 1 \) (and \(\{x_i > 0\} \)):

\[
\log \left(\sum_i \alpha_i x_i \right) \geq \sum_i \alpha_i \log(x_i)
\]

For probability measure \(\alpha \) and concave \(f \)

\[
f(\mathbb{E}_\alpha [x]) \geq \mathbb{E}_\alpha [f(x)]
\]
Jensen’s inequality

One view: EM iteratively refines a lower bound on the log-likelihood.

In general:

For $\alpha_i \geq 0$, $\sum \alpha_i = 1$ (and $\{x_i > 0\}$):

$$\log \left(\sum_i \alpha_i x_i \right) \geq \sum_i \alpha_i \log(x_i)$$

For probability measure α and concave f

$$f \left(\mathbb{E}_\alpha [x] \right) \geq \mathbb{E}_\alpha [f(x)]$$

Equality (if and) only if $f(x)$ is almost surely constant or linear on (convex) support of α.
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$
\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} \ P(\mathcal{Y}, \mathcal{X}|\theta)
$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X} | \theta) = \log \int d\mathcal{Y} \ P(\mathcal{Y}, \mathcal{X} | \theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int d\mathcal{Y} \ P(\mathcal{Y}, \mathcal{X} | \theta)$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q]$$

where $H[q]$ is the entropy of $q(\mathcal{Y})$.

So:

$$F(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q]$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \geq \int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})}$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:
$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:
$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \geq \int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \overset{\text{def}}{=} \mathcal{F}(q, \theta).$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:
$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:
$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \geq \int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \overset{\text{def}}{=} F(q, \theta).$$

Now,
$$\int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} = \int d\mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) - \int d\mathcal{Y} q(\mathcal{Y}) \log q(\mathcal{Y})$$
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \geq \int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \overset{\text{def}}{=} \mathcal{F}(q, \theta).$$

Now,

$$\int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} = \int d\mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) - \int d\mathcal{Y} q(\mathcal{Y}) \log q(\mathcal{Y})$$

$$= \int d\mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) + \mathcal{H}[q],$$

where $\mathcal{H}[q]$ is the entropy of $q(\mathcal{Y})$.
The lower bound for EM – “free energy”

Observed data $\mathcal{X} = \{x_i\}$; Latent variables $\mathcal{Y} = \{y_i\}$; Parameters $\theta = \{\theta_x, \theta_y\}$.

Log-likelihood:

$$\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{Y}, \mathcal{X}|\theta)$$

By Jensen, any distribution, $q(\mathcal{Y})$, over the latent variables generates a lower bound:

$$\ell(\theta) = \log \int d\mathcal{Y} q(\mathcal{Y}) \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \geq \int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \overset{\text{def}}{=} F(q, \theta).$$

Now,

$$\int d\mathcal{Y} q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} = \int d\mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) - \int d\mathcal{Y} q(\mathcal{Y}) \log q(\mathcal{Y})$$

$$= \int d\mathcal{Y} q(\mathcal{Y}) \log P(\mathcal{Y}, \mathcal{X}|\theta) + H[q],$$

where $H[q]$ is the entropy of $q(\mathcal{Y})$.

So:

$$F(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q]$$
The E and M steps of EM

The free-energy lower bound on $\ell(\theta)$ is a function of θ and a distribution q:

$$\mathcal{F}(q, \theta) = \langle \log P(Y, X | \theta) \rangle_{q(Y)} + H[q],$$
The E and M steps of EM

The free-energy lower bound on $\ell(\theta)$ is a function of θ and a distribution q:

$$\mathcal{F}(q, \theta) = \langle \log P(Y, X | \theta) \rangle_{q(Y)} + H[q],$$

The EM steps can be re-written:

- **E step**: optimize $\mathcal{F}(q, \theta)$ wrt distribution over hidden variables holding parameters fixed:
 $$q^{(k)}(Y) := \arg\max_{q(Y)} \mathcal{F}(q(Y), \theta^{(k-1)}).$$
The E and M steps of EM

The free-energy lower bound on $\ell(\theta)$ is a function of θ and a distribution q:

$$F(q, \theta) = \langle \log P(Y, X|\theta) \rangle_{q(Y)} + H[q],$$

The EM steps can be re-written:

- **E step**: optimize $F(q, \theta)$ wrt distribution over hidden variables holding parameters fixed:
 $$q^{(k)}(Y) := \text{argmax}_{q(Y)} F(q(Y), \theta^{(k-1)}).$$

- **M step**: maximize $F(q, \theta)$ wrt parameters holding hidden distribution fixed:
 $$\theta^{(k)} := \text{argmax}_\theta F(q^{(k)}(Y), \theta) = \text{argmax}_\theta \langle \log P(Y, X|\theta) \rangle_{q^{(k)}(Y)}$$

The second equality comes from the fact $H[q^{(k)}(Y)]$ does not depend directly on θ.
The E Step

The free energy can be re-written

\[
F(q, \theta) = \int q(Y) \log P(Y|X, \theta) \frac{q(Y)}{P(Y|X, \theta)} dY = \int q(Y) \log P(X|\theta) dY + \int q(Y) \log P(Y|X, \theta) q(Y) dY = \ell(\theta) - \text{KL}[q || P(Y|X, \theta)]
\]

The second term is the Kullback-Leibler divergence. This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell \), and achieves that bound when \(\text{KL}[q || P(Y|X, \theta)] = 0 \). But \(\text{KL}[q || p] \) is zero if and only if \(q = p \) (see appendix.) So, the E step sets \(q(k)(Y) = P(Y|X, \theta(k-1)) \) [inference / imputation] and, after an E step, the free energy equals the likelihood.
The E Step

The free energy can be re-written

\[F(q, \theta) = \int q(Y) \log \frac{P(Y, X|\theta)}{q(Y)} \, dY \]

This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell(\theta) \), and achieves that bound when \(KL[q(Y) \| P(Y|X, \theta)] = 0 \). But \(KL[q \| p] \) is zero if and only if \(q = p \) (see appendix.) So, the E step sets \(q(Y) = P(Y|X, \theta_{(k-1)}) \) [inference / imputation] and, after an E step, the free energy equals the likelihood.
The E Step

The free energy can be re-written

\[F(q, \theta) = \int q(Y) \log \frac{P(Y, X|\theta)}{q(Y)} \, dY \]

\[= \int q(Y) \log \frac{P(Y|X, \theta)P(X|\theta)}{q(Y)} \, dY \]
The E Step

The free energy can be re-written

\[F(q, \theta) = \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

\[= \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}|\mathcal{X}, \theta)P(\mathcal{X}|\theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

\[= \int q(\mathcal{Y}) \log P(\mathcal{X}|\theta) \, d\mathcal{Y} + \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}|\mathcal{X}, \theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

The second term is the Kullback-Leibler divergence. This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell(\theta) \), and achieves that bound when \(\text{KL}[q(\mathcal{Y}) \| P(\mathcal{Y}|\mathcal{X}, \theta)] = 0 \). But \(\text{KL}[q \| p] \) is zero if and only if \(q = p \) (see appendix). So, the E step sets \(q(k)(\mathcal{Y}) = P(\mathcal{Y}|\mathcal{X}, \theta(k-1)) \) [inference / imputation] and, after an E step, the free energy equals the likelihood.
The E Step

The free energy can be re-written

$$F(q, \theta) = \int q(Y) \log \frac{P(Y, X|\theta)}{q(Y)} \, dY$$

$$= \int q(Y) \log \frac{P(Y|X, \theta)P(X|\theta)}{q(Y)} \, dY$$

$$= \int q(Y) \log P(X|\theta) \, dY + \int q(Y) \log \frac{P(Y|X, \theta)}{q(Y)} \, dY$$

$$= \ell(\theta) - KL[q(Y)||P(Y|X, \theta)]$$

The second term is the Kullback-Leibler divergence.

This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell(\theta) \), and achieves that bound when

$$KL[q(Y)||P(Y|X, \theta)] = 0.$$

But \(KL[q(Y)||P(Y|X, \theta)] \) is zero if and only if \(q = P(Y|X, \theta) \) (see appendix.)

So, the E step sets

$$q(Y^{(k)}) = P(Y|X, \theta^{(k-1)})$$

[inference / imputation] and, after an E step, the free energy equals the likelihood.
The E Step

The free energy can be re-written

\[F(q, \theta) = \int q(Y) \log \frac{P(Y, X|\theta)}{q(Y)} \, dY \]

\[= \int q(Y) \log \frac{P(Y|X, \theta) P(X|\theta)}{q(Y)} \, dY \]

\[= \int q(Y) \log P(X|\theta) \, dY + \int q(Y) \log \frac{P(Y|X, \theta)}{q(Y)} \, dY \]

\[= \ell(\theta) - \text{KL}[q(Y)\|P(Y|X, \theta)] \]

The second term is the Kullback-Leibler divergence.

This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell \), and achieves that bound when \(\text{KL}[q(Y)\|P(Y|X, \theta)] = 0 \).
The E Step

The free energy can be re-written

\[\mathcal{F}(q, \theta) = \int q(Y) \log \frac{P(Y, X|\theta)}{q(Y)} \, dY \]

\[= \int q(Y) \log \frac{P(Y|X, \theta)P(X|\theta)}{q(Y)} \, dY \]

\[= \int q(Y) \log P(X|\theta) \, dY + \int q(Y) \log \frac{P(Y|X, \theta)}{q(Y)} \, dY \]

\[= \ell(\theta) - KL[q(Y)\|P(Y|X, \theta)] \]

The second term is the Kullback-Leibler divergence.

This means that, for fixed \(\theta \), \(\mathcal{F} \) is bounded above by \(\ell \), and achieves that bound when \(KL[q(Y)\|P(Y|X, \theta)] = 0 \).

But \(KL[q\|p] \) is zero if and only if \(q = p \) (see appendix.)
The E Step

The free energy can be re-written

\[F(q, \theta) = \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}, \mathcal{X}|\theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

\[= \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}|\mathcal{X}, \theta)P(\mathcal{X}|\theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

\[= \int q(\mathcal{Y}) \log P(\mathcal{X}|\theta) \, d\mathcal{Y} + \int q(\mathcal{Y}) \log \frac{P(\mathcal{Y}|\mathcal{X}, \theta)}{q(\mathcal{Y})} \, d\mathcal{Y} \]

\[= \ell(\theta) - \text{KL}[q(\mathcal{Y})\|P(\mathcal{Y}|\mathcal{X}, \theta)] \]

The second term is the Kullback-Leibler divergence.

This means that, for fixed \(\theta \), \(F \) is bounded above by \(\ell \), and achieves that bound when \(\text{KL}[q(\mathcal{Y})\|P(\mathcal{Y}|\mathcal{X}, \theta)] = 0 \).

But \(\text{KL}[q\|p] \) is zero if and only if \(q = p \) (see appendix.)

So, the E step sets

\[q^{(k)}(\mathcal{Y}) = P(\mathcal{Y}|\mathcal{X}, \theta^{(k-1)}) \]

[inference / imputation]

and, after an E step, the free energy equals the likelihood.
Coordinate Ascent in \mathcal{F} (Demo)

To visualise, we consider a one parameter / one latent mixture:

$$s \sim \text{Bernoulli}[\pi]$$
$$x|s = 0 \sim \mathcal{N}[-1, 1] \quad x|s = 1 \sim \mathcal{N}[1, 1].$$

Single data point $x_1 = .3$.
$q(s)$ is a distribution on a single binary latent, and so is represented by $r_1 \in [0, 1]$.
Coordinate Ascent in \mathcal{F} (Demo)
EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$\ell(\theta^{(k-1)})$$
EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

\[\ell(\theta^{(k-1)}) = \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \]

- The E step brings the free energy to the likelihood.

- The E step brings the free energy to the likelihood.

- The M-step maximises the free energy wrt \(\theta \).

- If the M-step is executed so that \(\theta^{(k)} \neq \theta^{(k-1)} \) iff \(\mathcal{F} \) increases, then the overall EM iteration will step to a new value of \(\theta \) iff the likelihood increases.

- Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see appendices).
EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

$$\ell(\theta^{(k-1)}) = \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)})$$

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt θ.
EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

\[
\ell(\theta^{(k-1)}) = \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),
\]

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt \(\theta\).
- \(\mathcal{F} \leq \ell\) by Jensen – or, equivalently, from the non-negativity of KL.
EM Never Decreases the Likelihood

The E and M steps together never decrease the log likelihood:

\[
\ell(\theta^{(k-1)}) = \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),
\]

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt \(\theta\).
- \(\mathcal{F} \leq \ell\) by Jensen – or, equivalently, from the non-negativity of KL

If the M-step is executed so that \(\theta^{(k)} \neq \theta^{(k-1)}\) iff \(\mathcal{F}\) increases, then the overall EM iteration will step to a new value of \(\theta\) iff the likelihood increases.
The E and M steps together never decrease the log likelihood:

\[
\ell(\theta^{(k-1)}) = \mathcal{F}(q^{(k)}, \theta^{(k-1)}) \leq \mathcal{F}(q^{(k)}, \theta^{(k)}) \leq \ell(\theta^{(k)}),
\]

- The E step brings the free energy to the likelihood.
- The M-step maximises the free energy wrt \(\theta \).
- \(\mathcal{F} \leq \ell \) by Jensen – or, equivalently, from the non-negativity of KL.

If the M-step is executed so that \(\theta^{(k)} \neq \theta^{(k-1)} \) iff \(\mathcal{F} \) increases, then the overall EM iteration will step to a new value of \(\theta \) iff the likelihood increases.

Can also show that fixed points of EM (generally) correspond to maxima of the likelihood (see appendices).
EM Summary

- An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model.

\[
\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int \! d\mathcal{Y} \ P(\mathcal{X}|\mathcal{Y}, \theta)P(\mathcal{Y}|\theta)
\]
EM Summary

- An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model.

\[
\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{X}|\mathcal{Y}, \theta)P(\mathcal{Y}|\theta)
\]

- Increases a variational lower bound on the likelihood by coordinate ascent.

\[
\mathcal{F}(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q] = \ell(\theta) - \text{KL}[q(\mathcal{Y})||P(\mathcal{Y}|\mathcal{X})] \leq \ell(\theta)
\]
EM Summary

- An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model.

\[\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{X}|\mathcal{Y}, \theta) P(\mathcal{Y}|\theta) \]

- Increases a variational lower bound on the likelihood by coordinate ascent.

\[F(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q] = \ell(\theta) - KL[q(\mathcal{Y}) \| P(\mathcal{Y}|\mathcal{X})] \leq \ell(\theta) \]

- E step:

\[q^{(k)}(\mathcal{Y}) := \arg\max_{q(\mathcal{Y})} F(q(\mathcal{Y}), \theta^{(k-1)}) = P(\mathcal{Y}|\mathcal{X}, \theta^{(k-1)}) \]
EM Summary

- An iterative algorithm that finds (local) maxima of the likelihood of a latent variable model.

\[\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} P(\mathcal{X}|\mathcal{Y}, \theta)P(\mathcal{Y}|\theta) \]

- Increases a variational lower bound on the likelihood by coordinate ascent.

\[\mathcal{F}(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q] = \ell(\theta) - \text{KL}[q(\mathcal{Y})||P(\mathcal{Y}|\mathcal{X})] \leq \ell(\theta) \]

- E step:

\[q^{(k)}(\mathcal{Y}) := \arg \max_{q(\mathcal{Y})} \mathcal{F}(q(\mathcal{Y}), \theta^{(k-1)}) = P(\mathcal{Y}|\mathcal{X}, \theta^{(k-1)}) \]

- M step:

\[\theta^{(k)} := \arg \max_{\theta} \mathcal{F}(q^{(k)}(\mathcal{Y}), \theta) = \arg \max_{\theta} \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q^{(k)}(\mathcal{Y})} \]
EM Summary

- An **iterative** algorithm that finds (local) maxima of the likelihood of a latent variable model.

\[
\ell(\theta) = \log P(\mathcal{X}|\theta) = \log \int d\mathcal{Y} \ P(\mathcal{X}|\mathcal{Y}, \theta) P(\mathcal{Y}|\theta)
\]

- Increases a **variational lower bound** on the likelihood by coordinate ascent.

\[
\mathcal{F}(q, \theta) = \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q(\mathcal{Y})} + H[q] = \ell(\theta) - \text{KL}[q(\mathcal{Y})||P(\mathcal{Y}|\mathcal{X})] \leq \ell(\theta)
\]

- **E step:**

\[
q^{(k)}(\mathcal{Y}) := \arg\max_{q(\mathcal{Y})} \mathcal{F}(q(\mathcal{Y}), \theta^{(k-1)}) = P(\mathcal{Y}|\mathcal{X}, \theta^{(k-1)})
\]

- **M step:**

\[
\theta^{(k)} := \arg\max_{\theta} \mathcal{F}(q^{(k)}(\mathcal{Y}), \theta) = \arg\max_{\theta} \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{q^{(k)}(\mathcal{Y})}
\]

- After E-step \(\mathcal{F}(q, \theta) = \ell(\theta) \Rightarrow \) maximum of free-energy is maximum of likelihood.
Partial M steps and Partial E steps

Partial M steps: The proof holds even if we just *increase* \mathcal{F} wrt θ rather than maximize. (Dempster, Laird and Rubin (1977) call this the generalized EM, or GEM, algorithm).

In fact, immediately after an E step

$$
\frac{\partial}{\partial \theta} \bigg|_{\theta^{(k-1)}} \langle \log P(\mathcal{X}, \mathcal{Y}|\theta) \rangle_{q^{(k)}(\mathcal{Y})[=P(\mathcal{Y}|\mathcal{X},\theta^{(k-1)})]} = \frac{\partial}{\partial \theta} \bigg|_{\theta^{(k-1)}} \log P(\mathcal{X}|\theta)
$$

[cf. mixture gradients from last lecture.] So E-step (inference) can be used to construct other gradient-based optimisation schemes (e.g. “Expectation Conjugate Gradient”, Salakhutdinov et al. *ICML* 2003).

Partial E steps: We can also just *increase* \mathcal{F} wrt to some of the qs.

For example, sparse or online versions of the EM algorithm would compute the posterior for a subset of the data points or as the data arrives, respectively. One might also update the posterior over a subset of the hidden variables, while holding others fixed...
EM for MoGs

- Evaluate responsibilities

\[r_{im} = \frac{P_m(x) \pi_m}{\sum_{m'} P_{m'}(x) \pi_{m'}} \]

- Update parameters

\[\mu_m \leftarrow \frac{\sum_i r_{im} x_i}{\sum_i r_{im}} \]
\[\Sigma_m \leftarrow \frac{\sum_i r_{im} (x_i - \mu_m)(x_i - \mu_m)^T}{\sum_i r_{im}} \]
\[\pi_m \leftarrow \frac{\sum_i r_{im}}{N} \]
The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

$$p(x|\theta) = \sum_{m=1}^{k} p(s = m|\theta)p(x|s = m, \theta) \propto \sum_{m=1}^{k} \frac{\pi_m}{\sigma_m} \exp \left\{ -\frac{1}{2\sigma_m^2} (x - \mu_m)^2 \right\},$$

where θ is the collection of parameters: means μ_m, variances σ_m^2 and mixing proportions $\pi_m = p(s = m|\theta)$.

The hidden variable s_i indicates which component generated observation x_i.
The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point \(x \) is:

\[
p(x|\theta) = \sum_{m=1}^{k} p(s = m|\theta)p(x|s = m, \theta) \propto \sum_{m=1}^{k} \frac{\pi_m}{\sigma_m} \exp \left\{ -\frac{1}{2\sigma_m^2} (x - \mu_m)^2 \right\},
\]

where \(\theta \) is the collection of parameters: means \(\mu_m \), variances \(\sigma_m^2 \) and mixing proportions \(\pi_m = p(s = m|\theta) \).

The hidden variable \(s_i \) indicates which component generated observation \(x_i \).

The E-step computes the posterior for \(s_i \) given the current parameters:

\[
q(s_i) = p(s_i|x_i, \theta) \propto p(x_i|s_i, \theta)p(s_i|\theta)
\]
The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

$$p(x|\theta) = \sum_{m=1}^{k} \frac{\pi_m}{\sigma_m} \exp \left\{ - \frac{1}{2\sigma_m^2} (x - \mu_m)^2 \right\},$$

where θ is the collection of parameters: means μ_m, variances σ_m^2 and mixing proportions $\pi_m = p(s = m|\theta)$.

The hidden variable s_i indicates which component generated observation x_i.

The E-step computes the posterior for s_i given the current parameters:

$$q(s_i) = p(s_i|x_i, \theta) \propto p(x_i|s_i, \theta)p(s_i|\theta)$$

$$q(s_i = m) \propto \frac{\pi_m}{\sigma_m} \exp \left\{ - \frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right\}$$

with the normalization such that $\sum_m r_{im} = 1.$
The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point \(x \) is:

\[
p(x | \theta) = \sum_{m=1}^{k} p(s = m | \theta) p(x | s = m, \theta) \alpha \sum_{m=1}^{k} \frac{\pi_m}{\sigma_m} \exp \left\{ -\frac{1}{2\sigma_m^2} (x - \mu_m)^2 \right\},
\]

where \(\theta \) is the collection of parameters: means \(\mu_m \), variances \(\sigma_m^2 \) and mixing proportions \(\pi_m = p(s = m | \theta) \).

The hidden variable \(s_i \) indicates which component generated observation \(x_i \).

The E-step computes the posterior for \(s_i \) given the current parameters:

\[
q(s_i) = p(s_i | x_i, \theta) \propto p(x_i | s_i, \theta) p(s_i | \theta)
\]

\[
r_{im} \overset{\text{def}}{=} q(s_i = m) \alpha \frac{\pi_m}{\sigma_m} \exp \left\{ -\frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right\} \quad \text{(responsibilities)}
\]

with the normalization such that \(\sum_m r_{im} = 1 \).
The Gaussian mixture model (E-step)

In a univariate Gaussian mixture model, the density of a data point x is:

$$p(x|\theta) = \sum_{m=1}^{k} p(s = m|\theta)p(x|s = m, \theta) \propto \sum_{m=1}^{k} \pi_m \exp \left\{ -\frac{1}{2\sigma_m^2} (x - \mu_m)^2 \right\},$$

where θ is the collection of parameters: means μ_m, variances σ_m^2 and mixing proportions $\pi_m = p(s = m|\theta)$.

The hidden variable s_i indicates which component generated observation x_i.

The E-step computes the posterior for s_i given the current parameters:

$$q(s_i) = p(s_i|x_i, \theta) \propto p(x_i|s_i, \theta)p(s_i|\theta)$$

$$r_{im} \overset{\text{def}}{=} q(s_i = m) \propto \frac{\pi_m}{\sigma_m} \exp \left\{ -\frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right\} \quad \text{(responsibilities)}$$

with the normalization such that $\sum_m r_{im} = 1$.
The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

\[
E = \langle \log p(x, s|\theta) \rangle_{q(s)} = \sum q(s) \log[p(s|\theta) p(x|s, \theta)]
= \sum_{i,m} r_{im} \left[\log \pi_m - \log \sigma_m - \frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right].
\]

Optimum is found by setting the partial derivatives of E to zero:
The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since \(s \) is discrete):

\[
E = \langle \log p(x, s|\theta) \rangle_{q(s)} = \sum q(s) \log[p(s|\theta) p(x|s, \theta)]
\]

\[
= \sum_{i,m} r_{im} \left[\log \pi_m - \log \sigma_m - \frac{1}{2\sigma^2_m} (x_i - \mu_m)^2 \right].
\]

Optimum is found by setting the partial derivatives of \(E \) to zero:

\[
\frac{\partial}{\partial \mu_m} E = \sum_i r_{im} \frac{(x_i - \mu_m)}{2\sigma^2_m} = 0 \quad \Rightarrow \quad \mu_m = \frac{\sum_i r_{im} x_i}{\sum_i r_{im}},
\]
The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

\[
E = \langle \log p(x, s|\theta) \rangle_{q(s)} = \sum q(s) \log[p(s|\theta) p(x|s, \theta)]
\]

\[
= \sum r_{im} \left[\log \pi_m - \log \sigma_m - \frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right].
\]

Optimum is found by setting the partial derivatives of \(E \) to zero:

\[
\frac{\partial}{\partial \mu_m} E = \sum_i r_{im} \frac{x_i - \mu_m}{2\sigma_m^2} = 0 \quad \Rightarrow \quad \mu_m = \frac{\sum_i r_{im} x_i}{\sum_i r_{im}},
\]

\[
\frac{\partial}{\partial \sigma_m} E = \sum_i r_{im} \left[-\frac{1}{\sigma_m} + \frac{(x_i - \mu_m)^2}{\sigma_m^3} \right] = 0 \quad \Rightarrow \quad \sigma_m^2 = \frac{\sum_i r_{im} (x_i - \mu_m)^2}{\sum_i r_{im}},
\]

where \(\lambda \) is a Lagrange multiplier ensuring that the mixing proportions sum to unity.
The Gaussian mixture model (M-step)

In the M-step we optimize the sum (since s is discrete):

\[
E = \langle \log p(x, s|\theta) \rangle_{q(s)} = \sum q(s) \log[p(s|\theta) p(x|s, \theta)] = \sum r_{im} \left[\log \pi_m - \log \sigma_m - \frac{1}{2\sigma_m^2} (x_i - \mu_m)^2 \right].
\]

Optimum is found by setting the partial derivatives of \(E \) to zero:

\[
\frac{\partial}{\partial \mu_m} E = \sum_i r_{im} \frac{(x_i - \mu_m)}{2\sigma_m^2} = 0 \quad \Rightarrow \quad \mu_m = \frac{\sum_i r_{im} x_i}{\sum_i r_{im}},
\]

\[
\frac{\partial}{\partial \sigma_m} E = \sum_i r_{im} \left[- \frac{1}{\sigma_m} + \frac{(x_i - \mu_m)^2}{\sigma_m^3} \right] = 0 \quad \Rightarrow \quad \sigma_m^2 = \frac{\sum_i r_{im} (x_i - \mu_m)^2}{\sum_i r_{im}},
\]

\[
\frac{\partial}{\partial \pi_m} E = \sum_i r_{im} \frac{1}{\pi_m}, \quad \frac{\partial E}{\partial \pi_m} + \lambda = 0 \quad \Rightarrow \quad \pi_m = \frac{1}{n} \sum_i r_{im},
\]

where \(\lambda \) is a Lagrange multiplier ensuring that the mixing proportions sum to unity.
The model for \(x \):

\[
p(x|\theta) = \int p(y|\theta)p(x|y, \theta)dy = \mathcal{N}(0, \Lambda^T \Lambda + \Psi)
\]

Model parameters: \(\theta = \{\Lambda, \Psi\} \).

E step: For each data point \(x_n \), compute the posterior distribution of hidden factors given the observed data: \(q_n(y_n) = p(y_n|x_n, \theta_t) \).

M step: Find the \(\theta_{t+1} \) that maximises \(\mathcal{F}(q, \theta) \):

\[
\mathcal{F}(q, \theta) = \sum_n \int q_n(y_n) \left[\log p(y_n|\theta) + \log p(x_n|y_n, \theta) - \log q_n(y_n) \right] dy_n \\
= \sum_n \int q_n(y_n) \left[\log p(y_n|\theta) + \log p(x_n|y_n, \theta) \right] dy_n + c.
\]
E step: For each data point x_n, compute the posterior distribution of hidden factors given the observed data: $q_n(y_n) = p(y_n|x_n, \theta) = p(y_n, x_n|\theta)/p(x_n|\theta)$.

Tactic: write $p(y_n, x_n|\theta)$, consider x_n to be fixed. What is this as a function of y_n?

$$p(y_n, x_n) = p(y_n)p(x_n|y_n)$$

$$= (2\pi)^{-\frac{K}{2}} \exp\left\{-\frac{1}{2} y_n^T y_n\right\} |2\pi\Psi|^{-\frac{1}{2}} \exp\left\{-\frac{1}{2} (x_n - \Lambda y_n)^T \Psi^{-1} (x_n - \Lambda y_n)\right\}$$

$$= c \times \exp\left\{-\frac{1}{2} [y_n^T y_n + (x_n - \Lambda y_n)^T \Psi^{-1} (x_n - \Lambda y_n)]\right\}$$

$$= c' \times \exp\left\{-\frac{1}{2} [y_n^T (I + \Lambda^T \Psi^{-1} \Lambda)y_n - 2y_n^T \Lambda^T \Psi^{-1} x_n]\right\}$$

$$= c'' \times \exp\left\{-\frac{1}{2} [y_n^T \Sigma^{-1} y_n - 2y_n^T \Sigma^{-1} \mu_n + \mu_n^T \Sigma^{-1} \mu_n]\right\}$$

So $\Sigma = (I + \Lambda^T \Psi^{-1} \Lambda)^{-1} = I - \beta \Lambda$ and $\mu_n = \Sigma \Lambda^T \Psi^{-1} x_n = \beta x_n$. Where $\beta = \Sigma \Lambda^T \Psi^{-1}$.

Note that μ_n is a linear function of x_n and Σ does not depend on x_n.
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

$$\log p(y_n|\theta) + \log p(x_n|y_n, \theta)$$
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

\[
\log p(y_n|\theta) + \log p(x_n|y_n, \theta) = c - \frac{1}{2} y_n^T y_n - \frac{1}{2} \log |\psi| - \frac{1}{2} (x_n - \Lambda y_n)^T \psi^{-1} (x_n - \Lambda y_n)
\]
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

\[
\log p(y_n|\theta) + \log p(x_n|y_n, \theta)
= c - \frac{1}{2} y_n^\top y_n - \frac{1}{2} \log |\psi| - \frac{1}{2} (x_n - \Lambda y_n)^\top \psi^{-1} (x_n - \Lambda y_n)
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} [x_n^\top \psi^{-1} x_n - 2x_n^\top \psi^{-1} \Lambda y_n + y_n^\top \Lambda^\top \psi^{-1} \Lambda y_n]
\]
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

$$\log p(y_n|\theta) + \log p(x_n|y_n, \theta)$$

$$= c - \frac{1}{2} y_n^T y_n - \frac{1}{2} \log |\Psi| - \frac{1}{2} (x_n - \Lambda y_n)^T \Psi^{-1} (x_n - \Lambda y_n)$$

$$= c' - \frac{1}{2} \log |\Psi| - \frac{1}{2} \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda y_n + y_n^T \Lambda^T \Psi^{-1} \Lambda y_n \right]$$

$$= c' - \frac{1}{2} \log |\Psi| - \frac{1}{2} \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda y_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda y_n y_n^T \right] \right]$$

Taking expectations wrt $q_n(y_n)$:

$$= c' - \frac{1}{2} \log |\Psi| - \frac{1}{2} \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda y_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda y_n y_n^T \right] \right]$$

Note that we don't need to know everything about $q_n(y_n)$, just the moments $\langle y_n \rangle$ and $\langle y_n y_n^T \rangle$. These are the expected sufficient statistics.
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $F = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

\[
\log p(y_n|\theta) + \log p(x_n|y_n, \theta)
= c - \frac{1}{2} y_n^T y_n - \frac{1}{2} \log |\psi| - \frac{1}{2} (x_n - \Lambda y_n)^T \psi^{-1} (x_n - \Lambda y_n)
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda y_n + y_n^T \Lambda^T \psi^{-1} \Lambda y_n \right]
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda y_n + \text{Tr} \left[\Lambda^T \psi^{-1} \Lambda y_n y_n^T \right] \right]
\]

Taking expectations wrt $q_n(y_n)$:
The M step for Factor Analysis

M step: Find θ_{t+1} by maximising $\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c$

\[
\log p(y_n|\theta) + \log p(x_n|y_n, \theta) = c - \frac{1}{2} y_n^T y_n - \frac{1}{2} \log |\psi| - \frac{1}{2} (x_n - \Lambda y_n)^T \psi^{-1} (x_n - \Lambda y_n)
\]

\[
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda y_n + y_n^T \Lambda^T \psi^{-1} \Lambda y_n \right]
\]

Taking expectations wrt $q_n(y_n)$:

\[
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \psi^{-1} \Lambda \mu_n \mu_n^T + \Sigma \right] \right]
\]
The M step for Factor Analysis

M step: Find \(\theta_{t+1} \) by maximising \(\mathcal{F} = \sum_n \langle \log p(y_n|\theta) + \log p(x_n|y_n, \theta) \rangle_{q_n(y_n)} + c \)

\[
\log p(y_n|\theta) + \log p(x_n|y_n, \theta) \\
= c - \frac{1}{2} y_n^T y_n - \frac{1}{2} \log |\psi| - \frac{1}{2} (x_n - \Lambda y_n)^T \psi^{-1} (x_n - \Lambda y_n) \\
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda y_n + y_n^T \Lambda^T \psi^{-1} \Lambda y_n \right] \\
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda y_n + \text{Tr} \left[\Lambda^T \psi^{-1} \Lambda y_n y_n^T \right] \right]
\]

Taking expectations wrt \(q_n(y_n) \):

\[
= c' - \frac{1}{2} \log |\psi| - \frac{1}{2} \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right]
\]

Note that we don’t need to know everything about \(q(y_n) \), just the moments \(\langle y_n \rangle \) and \(\langle y_n y_n^T \rangle \). These are the expected sufficient statistics.
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left(x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right) \]
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

Note: we should actually only take derivatives w.r.t. \(\Psi \) since \(\Psi \) is diagonal.

As \(\Sigma \to 0 \) these become the equations for ML linear regression.
The M step for Factor Analysis (cont.)

\[F = c - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[\frac{\partial F}{\partial \Lambda} = \Psi^{-1} \sum_n x_n \mu_n^T - \Psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0 \]

Note: we should actually only take derivatives wrt \(\Psi \) since \(\Psi \) is diagonal. As \(\Sigma \to 0 \) these become the equations for ML linear regression.
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \psi^{-1} x_n - 2 x_n^T \psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[\frac{\partial F}{\partial \Lambda} = \psi^{-1} \sum_n x_n \mu_n^T - \psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0 \]

\[\Rightarrow \hat{\Lambda} = \left(\sum_n x_n \mu_n^T \right) \left(N \Sigma + \sum_n \mu_n \mu_n^T \right)^{-1} \]
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda(\mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[\frac{\partial F}{\partial \Lambda} = \Psi^{-1} \sum_n x_n \mu_n^T - \Psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0 \]

\[\Rightarrow \hat{\Lambda} = \left(\sum_n x_n \mu_n^T \right) \left(\sum_n \mu_n \mu_n^T \right)^{-1} \]

\[\frac{\partial F}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda(\mu_n \mu_n^T + \Sigma) \Lambda^T \right] \]

Note: we should actually only take derivatives w.r.t. \(\Psi_{dd} \) since \(\Psi \) is diagonal.
The M step for Factor Analysis (cont.)

\[
\mathcal{F} = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} (\mu_n \mu_n^T + \Sigma) \right] \right]
\]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[
\frac{\partial \mathcal{F}}{\partial \Lambda} = \Psi^{-1} \sum_n x_n \mu_n^T - \Psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0
\]

\[\Rightarrow \hat{\Lambda} = \left(\sum_n x_n \mu_n^T \right) \left(N \Sigma + \sum_n \mu_n \mu_n^T \right)^{-1}
\]

\[
\frac{\partial \mathcal{F}}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right]
\]

\[\Rightarrow \hat{\Psi} = \frac{1}{N} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right]
\]

Note: we should actually only take derivatives w.r.t. \(\Psi_{dd} \) since \(\Psi \) is diagonal.
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} (\Lambda \mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[\frac{\partial F}{\partial \Lambda} = \Psi^{-1} \sum_n x_n \mu_n^T - \Psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0 \]

\[\Rightarrow \hat{\Lambda} = \left(\sum_n x_n \mu_n^T \right) \left(N \Sigma + \sum_n \mu_n \mu_n^T \right)^{-1} \]

\[\frac{\partial F}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right] \]

\[\Rightarrow \hat{\Psi} = \frac{1}{N} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right] \]

\[\hat{\Psi} = \Lambda \Sigma \Lambda^T + \frac{1}{N} \sum_n (x_n - \Lambda \mu_n) (x_n - \Lambda \mu_n)^T \] (squared residuals)

Note: we should actually only take derivatives w.r.t. \(\Psi_{dd} \) since \(\Psi \) is diagonal.
The M step for Factor Analysis (cont.)

\[F = c' - \frac{N}{2} \log |\Psi| - \frac{1}{2} \sum_n \left[x_n^T \Psi^{-1} x_n - 2x_n^T \Psi^{-1} \Lambda \mu_n + \text{Tr} \left[\Lambda^T \Psi^{-1} \Lambda (\mu_n \mu_n^T + \Sigma) \right] \right] \]

Taking derivatives wrt \(\Lambda \) and \(\Psi^{-1} \), using \(\frac{\partial \text{Tr}[AB]}{\partial B} = A^T \) and \(\frac{\partial \log |A|}{\partial A} = A^{-T} \):

\[\frac{\partial F}{\partial \Lambda} = \Psi^{-1} \sum_n x_n \mu_n^T - \Psi^{-1} \Lambda \left(N \Sigma + \sum_n \mu_n \mu_n^T \right) = 0 \]

\[\Rightarrow \hat{\Lambda} = \left(\sum_n x_n \mu_n^T \right) \left(N \Sigma + \sum_n \mu_n \mu_n^T \right)^{-1} \]

\[\frac{\partial F}{\partial \Psi^{-1}} = \frac{N}{2} \Psi - \frac{1}{2} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right] \]

\[\Rightarrow \hat{\Psi} = \frac{1}{N} \sum_n \left[x_n x_n^T - \Lambda \mu_n x_n^T - x_n \mu_n^T \Lambda^T + \Lambda (\mu_n \mu_n^T + \Sigma) \Lambda^T \right] \]

\[\hat{\Psi} = \Lambda \Sigma \Lambda^T + \frac{1}{N} \sum_n (x_n - \Lambda \mu_n)(x_n - \Lambda \mu_n)^T \quad \text{(squared residuals)} \]

Note: we should actually only take derivatives w.r.t. \(\Psi_{dd} \) since \(\Psi \) is diagonal.
As \(\Sigma \to 0 \) these become the equations for ML linear regression.
Mixtures of Factor Analysers

Simultaneous clustering and dimensionality reduction.

\[p(x|\theta) = \sum_k \pi_k \mathcal{N}(\mu_k, \Lambda_k \Lambda_k^T + \Psi) \]

where \(\pi_k \) is the mixing proportion for FA \(k \), \(\mu_k \) is its centre, \(\Lambda_k \) is its “factor loading matrix”, and \(\Psi \) is a common sensor noise model. \(\theta = \{\{\pi_k, \mu_k, \Lambda_k\}_{k=1}^K, \Psi\} \)

We can think of this model as having two sets of hidden latent variables:

- A discrete indicator variable \(s_n \in \{1, \ldots K\} \)
- For each factor analyzer, a continuous factor vector \(y_{n,k} \in \mathcal{R}^{D_k} \)

\[
p(x|\theta) = \sum_{s_n=1}^K p(s_n|\theta) \int p(y|s_n, \theta) p(x_n|y, s_n, \theta) \, dy
\]

As before, an EM algorithm can be derived for this model:

E step: We need moments of \(p(y_n, s_n|x_n, \theta) \), specifically: \(\langle \delta_{s_n=m} \rangle, \langle \delta_{s_n=m} y_n \rangle \) and \(\langle \delta_{s_n=m} y_n y_n^T \rangle \).

M step: Similar to M-step for FA with responsibility-weighted moments.

EM for exponential families

EM is often applied to models whose joint over $\mathbf{z} = (\mathbf{y}, \mathbf{x})$ has exponential-family form:

$$p(\mathbf{z} | \theta) = f(\mathbf{z}) \exp\{\theta^T \mathbf{T}(\mathbf{z})\} / Z(\theta)$$

(with $Z(\theta) = \int f(\mathbf{z}) \exp\{\theta^T \mathbf{T}(\mathbf{z})\} d\mathbf{z}$) but whose marginal $p(\mathbf{x}) \not\in \text{ExpFam}$.
EM for exponential families

EM is often applied to models whose joint over $z = (y, x)$ has exponential-family form:

$$p(z|\theta) = f(z) \exp\{\theta^T T(z)\}/Z(\theta)$$

(with $Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} dz$) but whose marginal $p(x) \not\in \text{ExpFam}$.

The free energy dependence on θ is given by:

$$\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) dy - H[q]$$
EM for exponential families

EM is often applied to models whose joint over \(z = (y, x) \) has exponential-family form:

\[
p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)
\]

(with \(Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} \, dz \)) but whose marginal \(p(x) \notin \text{ExpFam} \).

The free energy dependence on \(\theta \) is given by:

\[
\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) \, dy - H[q]
\]

\[
= \int q(y) \left[\theta^T T(z) - \log Z(\theta) \right] \, dy + \text{const wrt } \theta
\]
EM for exponential families

EM is often applied to models whose joint over $z = (y, x)$ has exponential-family form:

$$p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)$$

(with $Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} dz$) but whose marginal $p(x) \not\in \text{ExpFam}$.

The free energy dependence on θ is given by:

$$\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) dy - H[q]$$

$$= \int q(y) \left[\theta^T T(z) - \log Z(\theta) \right] dy + \text{const wrt } \theta$$

$$= \theta^T \langle T(z) \rangle_{q(y)} - \log Z(\theta) + \text{const wrt } \theta$$

So, in the E step all we need to compute are the expected sufficient statistics under q.
EM for exponential families

EM is often applied to models whose **joint** over \(z = (y, x) \) has exponential-family form:

\[
p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)
\]

(with \(Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} \, dz \)) but whose marginal \(p(x) \not\in \text{ExpFam} \).

The free energy dependence on \(\theta \) is given by:

\[
\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) \, dy - H[q]
\]

\[
= \int q(y) [\theta^T T(z) - \log Z(\theta)] \, dy + \text{const wrt } \theta
\]

\[
= \theta^T \langle T(z) \rangle_{q(y)} - \log Z(\theta) + \text{const wrt } \theta
\]

So, in the **E step** all we need to compute are the **expected sufficient statistics** under \(q \).

We also have:

\[
\frac{\partial}{\partial \theta} \log Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(z) \exp\{\theta^T T(z)\}
\]
EM for exponential families

EM is often applied to models whose **joint** over \(z = (y, x) \) has exponential-family form:

\[
p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)
\]

(with \(Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} \, dz \)) but whose marginal \(p(x) \not\in \text{ExpFam} \).

The free energy dependence on \(\theta \) is given by:

\[
\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) \, dy - H[q]
\]

\[
= \int q(y) [\theta^T T(z) - \log Z(\theta)] \, dy + \text{const wrt } \theta
\]

\[
= \theta^T \langle T(z) \rangle_{q(y)} - \log Z(\theta) + \text{const wrt } \theta
\]

So, in the **E step** all we need to compute are the **expected sufficient statistics** under \(q \).

We also have:

\[
\frac{\partial}{\partial \theta} \log Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(z) \exp\{\theta^T T(z)\}
\]

\[
= \int \frac{1}{Z(\theta)} f(z) \exp\{\theta^T T(z)\} \cdot T(z)
\]
EM for exponential families

EM is often applied to models whose joint over \(z = (y, x) \) has exponential-family form:

\[
p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)
\]

(with \(Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} dz \)) but whose marginal \(p(x) \notin \text{ExpFam} \).

The free energy dependence on \(\theta \) is given by:

\[
\mathcal{F}(q, \theta) = \int q(y) \log p(y, x|\theta) dy - H[q]
\]

\[
= \int q(y) [\theta^T T(z) - \log Z(\theta)] dy + \text{const wrt } \theta
\]

\[
= \theta^T \langle T(z) \rangle_{q(y)} - \log Z(\theta) + \text{const wrt } \theta
\]

So, in the **E step** all we need to compute are the expected sufficient statistics under \(q \).

We also have:

\[
\frac{\partial}{\partial \theta} \log Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(z) \exp\{\theta^T T(z)\}
\]

\[
= \int \left(\frac{1}{Z(\theta)} f(z) \exp\{\theta^T T(z)\} \cdot T(z) = \langle T(z) | \theta \rangle \right)
\]
EM for exponential families

EM is often applied to models whose joint over \(z = (y, x) \) has exponential-family form:

\[
p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta)
\]

(with \(Z(\theta) = \int f(z) \exp\{\theta^T T(z)\} dz \)) but whose marginal \(p(x) \not\in \text{ExpFam} \).

The free energy dependence on \(\theta \) is given by:

\[
F(q, \theta) = \int q(y) \log p(y, x|\theta) dy - H[q]
\]

\[
= \int q(y) [\theta^T T(z) - \log Z(\theta)] dy + \text{const wrt } \theta
\]

\[
= \theta^T \langle T(z) \rangle_{q(y)} - \log Z(\theta) + \text{const wrt } \theta
\]

So, in the \textbf{E step} all we need to compute are the expected sufficient statistics under \(q \).

We also have:

\[
\frac{\partial}{\partial \theta} \log Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} Z(\theta) = \frac{1}{Z(\theta)} \frac{\partial}{\partial \theta} \int f(z) \exp\{\theta^T T(z)\}
\]

\[
= \int \underbrace{\frac{1}{Z(\theta)} f(z) \exp\{\theta^T T(z)\}}_{p(z|\theta)} \cdot T(z) = \langle T(z) | \theta \rangle
\]

Thus, the \textbf{M step} solves:

\[
\frac{\partial F}{\partial \theta} = \langle T(z) \rangle_{q(y)} - \langle T(z) | \theta \rangle = 0
\]
EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an **indicator** vector \mathbf{s} in place of the discrete s.

\[s_i = m \iff \mathbf{s}_i = [0, 0, \ldots, 1, \ldots 0] \]

mth position
EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an indicator vector s in place of the discrete s.

$$s_i = m \iff s_i = [0, 0, \ldots, 1, \ldots 0]$$

mth position

Collecting the M component distributions' natural params into a matrix $\Theta = [\theta_m]$:

$$\log P(X, S) = \sum_i \left[(\log \pi)^T s_i + s_i^T \Theta^T T(x_i) - s_i^T \log Z(\Theta) \right] + \text{const}$$

where $\log Z(\Theta)$ collects the log-normalisers for all components into an M-element vector.
EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an indicator vector s in place of the discrete s.

$$s_i = m \iff s_i = [0, 0, \ldots, 1, \ldots 0]$$

mth position

Collecting the M component distributions’ natural params into a matrix $\Theta = [\theta_m]$:

$$\log P(\mathcal{X}, S) = \sum_i \left[(\log \pi)^\top s_i + s_i^\top \Theta^\top T(x_i) - s_i^\top \log Z(\Theta) \right] + \text{const}$$

where $\log Z(\Theta)$ collects the log-normalisers for all components into an M-element vector.

Then, the expected sufficient statistics (E-step) are:

$$\sum_i \langle s_i \rangle_q \quad (\text{responsibilities } r_{im})$$

$$\sum_i T(x_i) \langle s_i^\top \rangle_q \quad (\text{responsibility-weighted sufficient stats})$$
EM for exponential family mixtures

To derive EM formally for models with discrete latents (including mixtures) it is useful to introduce an indicator vector \(\mathbf{s} \) in place of the discrete \(s \).

\[
\mathbf{s}_i = m \iff \mathbf{s}_i = [0, 0, \ldots, 1, \ldots 0] \\
\text{mth position}
\]

Collecting the \(M \) component distributions’ natural params into a matrix \(\Theta = [\theta_m] \):

\[
\log P(\mathcal{X}, \mathcal{S}) = \sum_i \left[(\log \pi)^\mathsf{T} \mathbf{s}_i + \mathbf{s}_i^\mathsf{T} \Theta^\mathsf{T} T(x_i) - \mathbf{s}_i^\mathsf{T} \log \mathbf{Z}(\Theta) \right] + \text{const}
\]

where \(\log \mathbf{Z}(\Theta) \) collects the log-normalisers for all components into an \(M \)-element vector.

Then, the expected sufficient statistics (E-step) are:

\[
\sum_i \langle \mathbf{s}_i \rangle_q \quad \text{(responsibilities } r_{im})
\]

\[
\sum_i T(x_i) \langle \mathbf{s}_i^\mathsf{T} \rangle_q \quad \text{(responsibility-weighted sufficient stats)}
\]

And maximisation of the expected log-joint (M-step) gives:

\[
\pi^{(k+1)} \propto \sum_i \langle \mathbf{s}_i \rangle_q \\
\left\langle T(x) | \theta_{(k+1)}^m \right\rangle = \left(\sum_i T(x_i) \langle [\mathbf{s}_i]_m \rangle_q \right) / \left(\sum_i \langle [\mathbf{s}_i]_m \rangle_q \right)
\]
What if we have a prior?

\[p(z|\theta) = f(z) \exp{\theta^T T(z)} / Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp{\theta^T \tau} / Z(\theta)^\nu \]
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp{\theta^T T(z)} / Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp{\theta^T \tau} / Z(\theta) \]

Augment the free energy by adding the log prior:

\[\mathcal{F}(q, \theta) = \int q(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}|\theta) d\mathcal{Y} - H[q] \leq \log P(\mathcal{X}|\theta) \]
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z)\exp{\theta^T T(z)} / Z(\theta) \quad \quad p(\theta) = F(\nu, \tau) \exp{\theta^T \tau} / Z(\theta)^\nu \]

Augment the free energy by adding the log prior:

\[\mathcal{F}_{\text{MAP}}(q, \theta) = \int q(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}, \theta) d\mathcal{Y} - H[q] \leq \log P(\mathcal{X}|\theta) + \log P(\theta) \]
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp\{\theta^T T(z)\}/Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp\{\theta^T \tau\}/Z(\theta)^\nu \]

Augment the free energy by adding the log prior:

\[\mathcal{F}_{\text{MAP}}(q, \theta) = \int q(\mathcal{Y}) \log p(\mathcal{Y}, X, \theta) d\mathcal{Y} - H[q] \leq \log P(X|\theta) + \log P(\theta) \]

\[= \int q(\mathcal{Y}) \left[\theta^T \left(\sum_i T(z_i) + \tau \right) - (N + \nu) \log Z(\theta) \right] d\mathcal{Y} + \text{const wrt } \theta \]
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp\{\theta^T \tau\} / Z(\theta)^{\nu} \]

Augment the free energy by adding the log prior:

\[\mathcal{F}_{\text{MAP}}(q, \theta) = \int q(y) \log p(y, x, \theta) dy - H[q] \leq \log P(x|\theta) + \log P(\theta) \]

\[= \int q(y) [\theta^T (\sum_i T(z_i) + \tau) - (N + \nu) \log Z(\theta)] dy + \text{const wrt } \theta \]

\[= \theta^T (\langle T(z) \rangle_{q(y)} + \tau) - (N + \nu) \log Z(\theta) + \text{const wrt } \theta \]

So, the expected sufficient statistics in the E step are unchanged.
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp{\theta^T T(z)} / Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp{\theta^T \tau} / Z(\theta) \]

Augment the free energy by adding the log prior:

\[F_{\text{MAP}}(q, \theta) = \int q(y) \log p(y, x, \theta) dy - H[q] \leq \log P(x|\theta) + \log P(\theta) \]

\[= \int q(y) [\theta^T (\sum_i T(z_i) + \tau) - (N + \nu) \log Z(\theta)] dy + \text{const wrt } \theta \]

\[= \theta^T (\langle T(z) \rangle_q + \tau) - (N + \nu) \log Z(\theta) + \text{const wrt } \theta \]

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy maxima are log-joint maxima (i.e. MAP values).
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp\{\theta^T T(z)\}/Z(\theta) \quad \quad p(\theta) = F(\nu, \tau) \exp\{\theta^T \tau\}/Z(\theta)^\nu \]

Augment the free energy by adding the log prior:

\[F_{\text{MAP}}(q, \theta) = \int q(\mathcal{Y}) \log p(\mathcal{Y}, \mathcal{X}, \theta) d\mathcal{Y} - H[q] \leq \log P(\mathcal{X}|\theta) + \log P(\theta) \]

\[= \int q(\mathcal{Y}) [\theta^T (\sum_i T(z_i) + \tau) - (N + \nu) \log Z(\theta)] d\mathcal{Y} + \text{const wrt } \theta \]

\[= \theta^T (\langle T(z) \rangle_{q(\mathcal{Y})} + \tau) - (N + \nu) \log Z(\theta) + \text{const wrt } \theta \]

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors?

Only approximately – we’ll return to this later as “Variational Bayes”.
EM for MAP

What if we have a prior?

\[p(z|\theta) = f(z) \exp\{\theta^T T(z)\} / Z(\theta) \quad p(\theta) = F(\nu, \tau) \exp\{\theta^T \tau\} / Z(\theta)^\nu \]

Augment the free energy by adding the log prior:

\[\mathcal{F}_{\text{MAP}}(q, \theta) = \int q(Y) \log p(Y, X, \theta) dY - H[q] \leq \log P(X|\theta) + \log P(\theta) \]

\[= \int q(Y) \left[\theta^T \left(\sum_i T(z_i) + \tau \right) - (N + \nu) \log Z(\theta) \right] dY + \text{const wrt } \theta \]

\[= \theta^T \left(\langle T(z) \rangle_{q(y)} + \tau \right) - (N + \nu) \log Z(\theta) + \text{const wrt } \theta \]

So, the expected sufficient statistics in the E step are unchanged.

Thus, after an E-step the augmented free-energy equals the log-joint, and so free-energy maxima are log-joint maxima (i.e. MAP values).

Can we find posteriors? Only approximately – we’ll return to this later as “Variational Bayes”.

References

 http://www.jstor.org/stable/2984875

 Optimization with EM and expectation-conjugate-gradient. In ICML (pp. 672-679).

 The EM Algorithm for Mixtures of Factor Analyzers.
Proof of the Matrix Inversion Lemma

\[(A + XBX^T)^{-1} = A^{-1} - A^{-1}X(B^{-1} + X^TA^{-1}X)^{-1}X^TA^{-1}\]

Need to prove:

\[\left(A^{-1} - A^{-1}X(B^{-1} + X^TA^{-1}X)^{-1}X^TA^{-1} \right) (A + XBX^T) = I\]

Expand:

\[I + A^{-1}XBX^T - A^{-1}X(B^{-1} + X^TA^{-1}X)^{-1}X^T - A^{-1}X(B^{-1} + X^TA^{-1}X)^{-1}X^TA^{-1}XBX^T\]

Regroup:

\[= I + A^{-1}X \left(BX^T - (B^{-1} + X^TA^{-1}X)^{-1}X^T - (B^{-1} + X^TA^{-1}X)^{-1}X^TA^{-1}XBX^T \right)\]

\[= I + A^{-1}X \left(BX^T - (B^{-1} + X^TA^{-1}X)^{-1}B^{-1}BX^T - (B^{-1} + X^TA^{-1}X)^{-1}X^TA^{-1}XBX^T \right)\]

\[= I + A^{-1}X \left(BX^T - (B^{-1} + X^TA^{-1}X)^{-1}(B^{-1} + X^TA^{-1}X)BX^T \right)\]

\[= I + A^{-1}X(BX^T - BX^T) = I\]
KL[$q(x)||p(x)] \geq 0$, with equality iff $\forall x : p(x) = q(x)$

First consider discrete distributions; the Kullback-Liebler divergence is:

$$\text{KL}[q||p] = \sum_i q_i \log \frac{q_i}{p_i}.$$

To minimize wrt distribution q we need a Lagrange multiplier to enforce normalisation:

$$E \overset{\text{def}}{=} \text{KL}[q||p] + \lambda (1 - \sum_i q_i) = \sum_i q_i \log \frac{q_i}{p_i} + \lambda (1 - \sum_i q_i)$$

Find conditions for stationarity

$$\frac{\partial E}{\partial q_i} = \log q_i - \log p_i + 1 - \lambda = 0 \Rightarrow q_i = p_i \exp(\lambda - 1)$$

$$\frac{\partial E}{\partial \lambda} = 1 - \sum_i q_i = 0 \Rightarrow \sum_i q_i = 1$$

Check sign of curvature (Hessian):

$$\frac{\partial^2 E}{\partial q_i \partial q_i} = \frac{1}{q_i} > 0, \quad \frac{\partial^2 E}{\partial q_i \partial q_j} = 0,$$

so unique stationary point $q_i = p_i$ is indeed a minimum. Easily verified that at that minimum, $\text{KL}[q||p] = \text{KL}[p||p] = 0$.

A similar proof holds for continuous densities, using functional derivatives.
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \langle \log P(Y, X | \theta) \rangle_{P(Y|X, \theta^*)} \bigg|_{\theta^*} = 0$$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \langle \log P(Y, X \mid \theta) \rangle_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

Now, $\ell(\theta) = \log P(X \mid \theta) = \langle \log P(X \mid \theta) \rangle_{P(Y \mid X, \theta^*)}$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \langle \log P(Y, X \mid \theta) \rangle_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

Now,

$$\ell(\theta) = \log P(X \mid \theta) = \langle \log P(X \mid \theta) \rangle_{P(Y \mid X, \theta^*)}$$

$$= \left\langle \log \frac{P(Y, X \mid \theta)}{P(Y \mid X, \theta)} \right\rangle_{P(Y \mid X, \theta^*)}$$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \left< \log P(Y, X \mid \theta) \right>_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

Now,

$$\ell(\theta) = \log P(X \mid \theta) = \left< \log P(X \mid \theta) \right>_{P(Y \mid X, \theta^*)}$$

$$= \left< \log \frac{P(Y, X \mid \theta)}{P(Y \mid X, \theta)} \right>_{P(Y \mid X, \theta^*)}$$

$$= \left< \log P(Y, X \mid \theta) \right>_{P(Y \mid X, \theta^*)} - \left< \log P(Y \mid X, \theta) \right>_{P(Y \mid X, \theta^*)}$$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \langle \log P(Y, X \mid \theta) \rangle_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

Now, $\ell(\theta) = \log P(X \mid \theta) = \langle \log P(X \mid \theta) \rangle_{P(Y \mid X, \theta^*)}$

$$= \left\langle \log \frac{P(Y, X \mid \theta)}{P(Y \mid X, \theta)} \right\rangle_{P(Y \mid X, \theta^*)}$$

$$= \langle \log P(Y, X \mid \theta) \rangle_{P(Y \mid X, \theta^*)} - \langle \log P(Y \mid X, \theta) \rangle_{P(Y \mid X, \theta^*)}$$

so, $\frac{d}{d\theta} \ell(\theta) = \frac{d}{d\theta} \langle \log P(Y, X \mid \theta) \rangle_{P(Y \mid X, \theta^*)} - \frac{d}{d\theta} \langle \log P(Y \mid X, \theta) \rangle_{P(Y \mid X, \theta^*)}$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \langle \log P(\mathcal{Y}, \mathcal{X} \mid \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)} \bigg|_{\theta^*} = 0$$

Now, $\ell(\theta) = \log P(\mathcal{X} \mid \theta) = \langle \log P(\mathcal{X} \mid \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)}$

$$= \langle \log \frac{P(\mathcal{Y}, \mathcal{X} \mid \theta)}{P(\mathcal{Y} \mid \mathcal{X}, \theta)} \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)}$$

$$= \langle \log P(\mathcal{Y}, \mathcal{X} \mid \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)} - \langle \log P(\mathcal{Y} \mid \mathcal{X}, \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)}$$

So,

$$\frac{d}{d\theta} \ell(\theta) = \frac{d}{d\theta} \langle \log P(\mathcal{Y}, \mathcal{X} \mid \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)} - \frac{d}{d\theta} \langle \log P(\mathcal{Y} \mid \mathcal{X}, \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)}$$

The second term is 0 at θ^* if the derivative exists (minimum of $\text{KL}[\cdot \mid \cdot]$), and thus:

$$\frac{d}{d\theta} \ell(\theta) \bigg|_{\theta^*} = \frac{d}{d\theta} \langle \log P(\mathcal{Y}, \mathcal{X} \mid \theta) \rangle_{P(\mathcal{Y}, \mathcal{X}, \theta^*)} \bigg|_{\theta^*} = 0$$
Fixed Points of EM are Stationary Points in ℓ

Let a fixed point of EM occur with parameter θ^*. Then:

$$\frac{\partial}{\partial \theta} \left\langle \log P(Y, X \mid \theta) \right\rangle_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

Now,

$$\ell(\theta) = \log P(X \mid \theta) = \left\langle \log P(X \mid \theta) \right\rangle_{P(Y \mid X, \theta^*)}$$

$$= \left\langle \log \frac{P(Y, X \mid \theta)}{P(Y \mid X, \theta)} \right\rangle_{P(Y \mid X, \theta^*)}$$

$$= \left\langle \log P(Y, X \mid \theta) \right\rangle_{P(Y \mid X, \theta^*)} - \left\langle \log P(Y \mid X, \theta) \right\rangle_{P(Y \mid X, \theta^*)}$$

So,

$$\frac{d}{d\theta} \ell(\theta) = \frac{d}{d\theta} \left\langle \log P(Y, X \mid \theta) \right\rangle_{P(Y \mid X, \theta^*)} - \frac{d}{d\theta} \left\langle \log P(Y \mid X, \theta) \right\rangle_{P(Y \mid X, \theta^*)}$$

The second term is 0 at θ^* if the derivative exists (minimum of $\text{KL}[\cdot \| \cdot]$), and thus:

$$\frac{d}{d\theta} \ell(\theta) \bigg|_{\theta^*} = \frac{d}{d\theta} \left\langle \log P(Y, X \mid \theta) \right\rangle_{P(Y \mid X, \theta^*)} \bigg|_{\theta^*} = 0$$

So, EM converges to a stationary point of $\ell(\theta)$.
Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point).
Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point).

Differentiating the previous expression wrt θ again we find

$$\frac{d^2}{d\theta^2} \ell(\theta) = \frac{d^2}{d\theta^2} \langle \log P(Y, X|\theta) \rangle_{P(Y|X, \theta^*)} - \frac{d^2}{d\theta^2} \langle \log P(Y|X, \theta) \rangle_{P(Y|X, \theta^*)}$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and θ^* is a maximum of ℓ.

[. . . as long as the derivatives exist. They sometimes don't (zero-noise ICA).]
Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

$$
\frac{d^2}{d\theta^2} \ell(\theta) = \frac{d^2}{d\theta^2} \langle \log P(Y, X|\theta) \rangle_{P(Y|X, \theta^*)} - \frac{d^2}{d\theta^2} \langle \log P(Y|X, \theta) \rangle_{P(Y|X, \theta^*)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum).
Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point)

Differentiating the previous expression wrt θ again we find

$$\frac{d^2}{d\theta^2} \ell(\theta) = \frac{d^2}{d\theta^2} \langle \log P(\mathcal{Y}, \mathcal{X}|\theta) \rangle_{P(\mathcal{Y}|\mathcal{X}, \theta^*)} - \frac{d^2}{d\theta^2} \langle \log P(\mathcal{Y}|\mathcal{X}, \theta) \rangle_{P(\mathcal{Y}|\mathcal{X}, \theta^*)}$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and

$$\theta^* \text{ is a maximum of } \ell.$$

[... as long as the derivatives exist. They sometimes don't (zero-noise ICA)].
Maxima in \mathcal{F} correspond to maxima in ℓ

Let θ^* now be the parameter value at a local maximum of \mathcal{F} (and thus at a fixed point).

Differentiating the previous expression wrt θ again we find

$$
\frac{d^2}{d\theta^2} \ell(\theta) = \frac{d^2}{d\theta^2} \langle \log P(Y, X|\theta) \rangle_{P(Y|X, \theta^*)} - \frac{d^2}{d\theta^2} \langle \log P(Y|X, \theta) \rangle_{P(Y|X, \theta^*)}
$$

The first term on the right is negative (a maximum) and the second term is positive (a minimum). Thus the curvature of the likelihood is negative and

$$
\theta^* \text{ is a maximum of } \ell.
$$

[... as long as the derivatives exist. They sometimes don’t (zero-noise ICA)].